Bulletin of the Tohoku niversity useum

No.23 2024

Bulletin of the Tohoku University Museum

Editors

Ryusaku NGAOAKA	Professor of Art History Department of Integrated Human Sciences, Graduate School of Arts and Letters, Tohoku University
Atsushi FUJISAWA	Professor of Archaeology The Tohoku university Museum, Tohoku University
Yoshitaka KANOMATA	Professor of Archaeology Department of Japanese Studies, Graduate School of Arts and Letters, Tohoku University
Reishi TAKASHIMA	Professor of Geology and Stratigraphy The Tohoku university Museum, Tohoku University

March, 2024

© The Tohoku University Museum, Tohoku University 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan

Printed by

Senkyo, Co., Ltd. 2-4-2, Hinodemachi, Miyaginoku, Sendai 983-0035, Japan Telephone : 022-236-7161

Cover image: Body design of Final Jomon Pottery drawn by the technigue of "erased-over cord impressions". Original photograph by Miki Kikuchi.

Contents

Shuji Niko : Silurian cephalopods from the Gionyama Formation in the Kuraoka area, Miyazaki Prefecture, Southwest Japan	1
Shuji Niko and Masayuki Ehiro : Late Devonian longiconic nautiloids from the Tobigamori Formation, Iwate Prefecture, Northeast Japan	
Shuji Niko and Masayuki Ehiro : Two Olenekian (Early Triassic) species of longiconic cephalopods from the Osawa Formation, Miyagi Prefecture, Northeast Japan	17
Masayuki Ehiro and Harumasa Kano : A new species of <i>Parisicaris</i> (Microcarididae, Thylacocephala) from the upper Olenekian (Lower Triassic) Osawa Formation in the South Kitakami Belt, Northeast Japan	23
Yoshitaka Kanomata, Hinako Aoki, Fumihito Nagase, Junmei Sawada, Fumiko Saeki and Daisei Kodama : Reexamination of the jar coffin excavated from the Sannotoge site in Aomori Prefecture	
Atsushi Fujisawa, Harumasa Kano, Yoshinori Tajiri and Masanao Shimura : High- resolution 3-D measurement of stone chanber of Yunokuma Tumulus in Fukuoka Prefecture using SfM method	53
Yi Lian, Harumasa Kano and Yoshitaka Kanomata : Techno-typological study of clay stupas from the Tagajo abandoned temple site using X-ray CT	

Silurian cephalopods from the Gionyama Formation in the Kuraoka area, Miyazaki Prefecture, Southwest Japan

Shuji Niko

Department of Environmental Studies, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima 739-8521, Japan

Abstract: Silurian longiconic cephalopods are described for the first time from the Gionyama Formation in the Kuraoka area, Miyazaki Prefecture, Southwest Japan. They include four orthocerids (*Michelinoceras (Michelinoceras) alticameratum* Kobayashi, 1984, *Kopaninoceras kobayashii* Niko, Hamada and Yasui, 1989, *Orthocycloceras* sp., *Arionoceras densiseptum* Kobayashi, 1983) and three pseudorthoceratids (*Haloites gionyamaensis* sp. nov., *Gordonoceras*? sp., *Subdoloceras* sp.). Except for *Subdoloceras* sp. that occurs from the Wenlock (upper lower Silurian) G2 and the Ludlow (lower upper Silurian) G3 members, their occurrences are restricted exclusively to the G3 Member. The new species is differentiated from the type species of *Haloites, H. bellus* Chen *in* Chen *et al.*, 1982, from the Wenlock in Hubei, Central China by its less eccentric siphuncular position. The Gionyama cephalopod assemblage belongs to the *Kopaninoceras* Fauna, whose main distributional area is the northern margin of Gondwana, as with the Yokokurayama and Suberidani assemblages in the Kurosegawa Belt.

Introduction

The Gionyama Formation in the Kuraoka area, Miyazaki Prefecture, Southwest Japan comprises an approximately 1400 m succession of Middle Paleozoic sedimentary rocks. Hamada (1959a) divided it into four members, namely G1 (sandstone with thin acidic tuff layers), G2 (limestone conglomerate with sandy to muddy matrixes), G3 (massive limestone), and G4 (sandstone, acidic tuff, conglomerate). Among them, the Wenlock (upper lower Silurian) G2 and Ludlow (lower upper Silurian) G3 members occur wellpreserved fossils, including corals (i.e., Hamada, 1958; Kido, 2010; Niko and Adachi, 2013) and trilobites (Hamada, 1959b; Kobayashi and Hamada, 1987), that typify Silurian faunas in the Kurosegawa Belt.

This paper describes Silurian cephalopods from the Gionyama Formation for the first time. Following three localities in the Kuraoka area have yielded cephalopods (Figure 1). Locality 1 states the western foot of Mt. Gionyama and occurs diverse fossils from limestone conglomerate of the G2 Member. Locality 4 is a road side outcrop of sandstone belonging to the G2 Member, from which *Geisonocerina*? sp. was listed by Hamada (1961). This species is neither figured nor described until now, furthermore I cannot detect an additional material at the identical locality. Locality 5 is a river bed of the Gokase River near Kyowa, where many float blocks of limestones derived

from the G3 Member are recognized.

Repository.—All examined specimens herein are housed in the Tohoku University Museum, Sendai (prefixed IGPS).

Cephalopod assemblage

The present Gionyama assemblage is composed by eight species of cephalopods, namely Michelinoceras (Michelinoceras) alticameratum Kobayashi, 1984, Kopaninoceras kobayashii Niko, Hamada and Yasui, 1989, Orthocycloceras sp., Arionoceras densiseptum Kobayashi, 1983, Geisonocerina? sp. (see Hamada, 1961; not confirmed in this study), Haloites gionyamaensis sp. nov., Gordonoceras? sp., and Subdoloceras sp. The latter three species are placed within the Order Pseudorthocerida that was not recorded previously in the Kurosegawa Belt. Not only Kopaninoceras but also Michelinoceras, Orthocycloceras, Arionoceras and Subdoloceras are the typical genera of the Kopaninoceras Fauna (Niko et al., 2017) of which the main territory was the northern margin of Gondwana (peri-Gondwanan) including North Africa, Variscan Europe, southern Afghanistan, western Tibet, and Malaysia. This assemblage is one of the representatives of the fauna same as the Yokokurayama (Kobayashi, 1983, 1984, 1988; Kobayashi and Hamada, 1985; Niko et al., 1989) and Suberidani (Niko, 2021) assemblages in the Kurosegawa Belt.

Figure 1. Map showing locations of the Kurosegawa Belt (KB), Miyazaki Prefecture, Gionyama, Yokokurayama and Suberidani in Southwest Japan (**A**), and cephalopod localities, 1, 4, 5 in the Kuraoka area (**B**). Used topographic map is "Digital Japan Basic Map" published by Geospatial Information Authority of Japan.

Systematic paleontology

Subclass Orthoceratoidea Teichert, 1967 Order Orthocerida Kuhn, 1940 Family Orthoceratidae M'Coy, 1844 Subfamily Michelinoceratinae Flower, 1945 Genus *Michelinoceras* Foerste, 1932 *Type species.—Orthoceras michelini* Barrande, 1866. Subgenus *Michelinoceras* Foerste, 1932, emend. Kiselev and Gnoli, 1992

Michelinoceras (Michelinoceras) alticameratum Kobayashi, 1984

Figures 2.A, 2.B

Michelinoceras sp. $\alpha,$ sp. nov., Kobayashi, 1983, p. 293, fig. 1.

Michelinoceras alticameratum Kobayashi, 1984, p. 245, pl. 3, fig. 1; 1988, p. 1.

Michelinoceras (Michelinoceras) alticameratum; Niko, 2021, p. 2, 4, figs. 2.A–2.D, 2.G.

Description.—Conchs orthoconic with very gradual expansion and circular transverse sections; the largest specimen of imperfect phragmocone (IGPS coll. cat. no. 112840) attains 3 mm in approximate diameter; conch

Figure 2. A, B. *Michelinoceras (Michelinoceras) alticameratum* Kobayashi, 1984, thin sections. A, IGPS coll. cat. no. 112838, longitudinal (slightly oblique) section: B, IGPS coll. cat. no. 112839, transverse section. **C–I**. *Arionoceras densiseptum* Kobayashi, 1983, thin sections. C, IGPS coll. cat. no. 112824, longitudinal (off siphuncle) section, note well-developed cameral deposits; D, IGPS coll. cat. no. 112827, transverse (slightly oblique) section: E, G–I, IGPS coll. cat. no. 112826: E, partial enlargement of H to show details of apical phragmocone; G, partial enlargement of H to show details of siphuncle; H, longitudinal (slightly oblique) section; I, partial enlargement of H to show details of septal neck (arrow): F, IGPS coll. cat. no. 112828, longitudinal section. Scale bar is 3 mm in A-C, E; 6 mm in D, F, H; 2.5 mm in G; 0.6 mm in I.

Shuji Niko

surface probably smooth; apex, adoral phragmocone and body chamber are missing. Camerae long to relatively long with form ratios (maximum width/length) of 1.1–1.6 and deeply concaved septa; sutures are possibly transverse. Siphuncle relatively large for the genus with ratios of siphuncular diameter per corresponding conch diameter attaining 0.15 and subcentral in position; connecting rings cylindrical; septal necks orthochoanitic and long. Cameral deposits are not observable.

Material examined.—IGPS coll. cat. nos. 112833, 112836, 112838–112840.

Occurrence.—All specimens examined herein occurred in limestone boulders at locality 5. Lithologically, these fossilbearing limestones obviously belong to the Ludlow (lower upper Silurian) G3 Member of the Gionyama Formation.

Discussion.—Michelinoceras (Michelinoceras) alticameratum is a common constituent of the late Silurian faunas in the Kurosegawa Belt, Southwest Japan. It was first described by Kobayashi (1984) from the upper Fukada Formation of the Yokokurayama Group in Kochi Prefecture. Subsequently, this species discovered from the Suberidani Group in Tokushima Prefecture (Niko, 2021). There is a few tentative in the present specific identification of the Gionyama specimens because they are fragments of the apical phragmocones.

Genus *Kopaninoceras* Kiselev, 1969 *Type species.—Orthoceras jucundum* Barrande, 1870.

Kopaninoceras kobayashii Niko, Hamada and Yasui, 1989 Figures 3.A, 3.B

Kopaninoceras kobayashii Niko, Hamada and Yasui, 1989, p. 61, 63, figs. 2.A, 2.B; Niko, 2021, p. 4, figs. 2.E, 2.F, 2.H.

Description.—Conchs orthoconic with circular transverse sections; expansion of conch is relatively rapid for the order, approximately 9°; the largest specimen of imperfect phragmocone (IGPS coll. cat. no. 113837) attains 5.5 mm in approximate diameter; conch surface probably smooth; apex and body chamber are missing. Camerae relatively long to moderate with form ratios (maximum width/length) of 1.4–1.9; septa relatively deep; sutures faintly oblique to possibly transverse. Siphuncle narrow and composed by cylindrical connecting rings and long orthochoanitic septal necks; position of siphuncle is subcentral. Cameral deposits are episeptal-mural and hyposeptal.

Material examined.—IGPS coll. cat. nos. 112823, 112830, 112832, 112834, 112837.

Occurrence.—All examined specimens were collected from float blocks of limestones derived from the Ludlow G3 Member at locality 5.

Discussion.—Kopaninoceras kobayashii is also a typical species in the Kurosegawa late Silurian cephalopod assemblages. It commonly occurs in the Yokokurayama and Suberidani groups in Southwest Japan (Niko *et al.*, 1989; Niko, 2021).

Subfamily Leurocycloceratinae Sweet, 1964 Genus **Orthocycloceras** Barskov, 1972 *Type species.—Orthocycloceras alayense* Barskov, 1972.

Orthocycloceras sp. Figures 3.C, 3.D

Description.—Longiconic and annulated orthocones with circular transverse sections; conch expansion gradual. Camerae short with form ratios (maximum width/length) of 3.1–5.2; septa shallow. Siphuncle central with cylindrical connecting rings and short orthochoanitic septal necks. Cameral deposits episeptal-mural.

Material examined.—IGPS coll. cat. nos. 112819, 112820, 112831, 112835.

Occurrence.—All examined specimens were collected from float blocks of limestones derived from the Ludlow G3 Member at locality 5.

Discussion.—There is a possibility that the present Gionyama specimens are conspecific with *Orthocycloceras* sp. (Niko, 2021, p. 4, figs. 2.I–2.K) described from the Suberidani Group. Unfortunately, they are inadequate to determinate, because their well-oriented section through the central axis of the siphuncle was not available.

Family Arionoceratidae Dzik, 1984 Genus **Arionoceras** Barskov, 1966 *Type species.—Orthoceras arion* Barrande, 1866.

Figure 3. A, B. *Kopaninoceras kobayashii* Niko, Hamada and Yasui, 1989, thin sections. A. IGPS coll. cat. no. 112830, longitudinal (slightly oblique) section: B. IGPS coll. cat. no. 112837, transverse section. **C, D.** *Orthocycloceras* sp., IGPS coll. cat. no. 112820, thin sections. C, longitudinal (slightly oblique) section: D, partial enlargement of C to show details of siphuncle. **E–G.** *Gordonoceras*? sp., IGPS coll. cat. no. 112822, thin sections. E, F, partial enlargements of G to show details of siphuncle: G, longitudinal (slightly oblique) section. Scale bar is 3 mm in A, B, E, F; 6 mm in C, G; 2.5 mm in D.

Arionoceras densiseptum Kobayashi, 1983 Figures 2.C-2.I

Arionoceras densiseptum Kobayashi, 1983, p. 293, fig. 5; 1984, p. 246, 247, pl. 3, figs. 3-5; The Tokai Fossil Society, 1995, p. 48, upper fig.

Description.-Conchs longiconic orthocones with slightly elliptical (dorsoventrally depressed?) transverse sections; expansion angles of conchs are relatively large for the order, ranging from 5° to 8°; the largest specimen of imperfect phragmocone (IGPS coll. cat. no. 112826) attains 9 mm in approximate diameter; conch surface probably smooth; apex and body chamber are missing. Camerae moderate to short with form ratios (maximum width/length) of 2.0-3.2; septal curvature moderate; sutures slightly oblique leaning toward the dorsum. Siphuncle shifts to the venter and subcentral in position; siphuncular walls composed by short orthoconic septal necks and nearly cylindrical connecting rings. Cameral deposits are episeptal-mural and hyposeptal, but developments of the latter deposits are partial and restricted to the ventral side.

Material examined.—IGPS coll. cat. nos. 112824-112829.

Occurrence.-All examined specimens were collected from float blocks of limestones derived from the Ludlow G3 Member at locality 5.

Discussion.-Characteristics of the examined six specimens from the Gionyama Formation are guite identical with those of Arionoceras densiseptum, whose type locality is the upper Fukada Formation. This discovery represents the first record of the species except for the Yokokurayama Group.

Order Pseudorthocerida Barskov, 1963 Family Pseudorthoceratidae Flower and Caster, 1935 ? Subfamily Pseudorthoceratinae Flower and Caster, 1935

Genus Haloites Chen in Chen, Liu and Chen, 1981 Type species.—Haloites bellus Chen in Chen, Liu and Chen, 1981.

Haloites gionyamaensis sp. nov. Figures 4.A-4.F

Diagnosis.-Longiconic pseudorthoceratid with gently exogastric cyrtocone in apical and orthocone in adoral parts; conch expansion gradual; camerae short; siphuncle near central with position ratio of 0.55; siphuncular segments subglobose to pyriform; septal necks cyrtochoanitic; cameral deposits mural and hyposeptal; annulosiphonate endosiphuncular deposits indicate subtriangular protrusion.

Description.—An only available specimen that designated

herein the holotype is longicone with circular transverse section and consists of imperfect phragmocone and apical body chamber; its apical part exhibits gentle exogastric curvature and adoral one is orthoconic; measurements of the holotype are 69 mm in preserved length, 15 mm in maximum observable diameter, and 33 mm in preserved length of body chamber; conch expansion gradual indicating approximately 4° at phragmocone; body chamber may exhibit weak constriction: detailed character of shell surface unknown because it embedded in matrix, but distinct ornamentation is not detected in longitudinal and transverse sections; apex and peristome are missing. Camerae short indicating 3.0-3.4 in form ratio (maximum width/length); septa shallow; in observations of longitudinal sections, sutures seem transverse. Siphuncle nearly central, but faint shifts to dorsum in position with siphuncular position ratio (minimum distance from ventral shell surface to central axis of siphuncle/corresponding conch diameter) of 0.55; siphuncular wall composed by short cyrtochoanitic septal necks and strongly inflated connecting rings; septal neck shapes asymmetrical indicating hook-like in ventral side with approximately 0.6 mm in brim length and simple cyrtochoanitic in dorsal side with 0.3-0.4 mm in ditto; longitudinal profiles of segments are subglobose to pyriform with form rations (maximum width/length) of 0.8-1.0; connecting rings undifferentiated in structure, but slightly thickened attaining 0.08 mm. Cameral deposits welldeveloped and differentiated into mural and hyposeptal types; endosiphuncular deposits annulosiphonate, slightly thicker in ventral side than in dorsal one, and microgranular in structure; longitudinal section of well-preserved endosiphuncular deposits indicates subtriangular protrusion on adoral surface of septum.

Material examined.-Holotype, IGPS coll. cat. no. 112818. Occurrence.-The holotype occurred in flat block of limestone deriving from the G3 Member of the Gionyama Formation. The fossil-bearing block was collected from the riverbed at locality 5.

Etymology.—The specific name is derived from the type stratum.

Discussion.-The present species from the Gionyama Formation is tentatively assigned to an insufficiently diagnosed genus Haloites, because its gross conch shape and siphuncular structure are similar to those of the generic type, H. bellus Chen (in Chen et al., 1982, p. 44, 45, pl. 10, figs. 14, 15), described from the Wenlock Xiushan Formation in Hubei, Central China, and as far as I know there is no comparable Silurian genus with it. These two species can be distinguished by their siphuncular position rations, i.e., 0.55 in the Gionyama species versus 0.57-0.63 in H. bellus. These numeral values indicate less eccentric siphuncular position in the former than the latter. Therefore, the author

Figure 4. *Haloites gionyamaensis* sp. nov., holotype, IGPS coll. cat. no. 112818, thin sections. **A**, longitudinal section, venter on left. **B**, transverse section of body chamber (arrow). **C**, **D**, partial enlargements of A to show details of siphuncle. **E**, partial enlargements to show details of ventral septal neck. **F**, partial enlargements to show details of dorsal septal neck. Scale bar is 12 mm in A; 6 mm in B, C; 3 mm in D; 0.6 mm in E, F.

advocates a new species as *H. gionyamaensis* even though some unclear points concerning the generic placement still remain.

The exogastric curvature of the apical shell and the subglobular siphuncular segments of *Haloites gionyamaensis* are also recognized in the Devonian to Carboniferous pseudactinoceratine pseudorthocerids, such as *Pseudactinoceras* Schindewolf, 1943, *Campyloceras* M'Coy, 1844, and *Macroloxoceras* Flower, 1957. However, these siphuncles are distinctly ventral from the central axis of the conch. There is a possibility that *Haloites* and genera of the subfamily Pseudactinoceratinae Schindewolf, 1943, are phylogenetically related.

Figure 5. *Subdoloceras* sp., thin sections. **A**, **D**, **E**, IGPS coll. cat. no. 112817: A, longitudinal (slightly oblique) section; D, longitudinal (slightly oblique) section, showing details siphuncle, arrow indicates septal neck; E, partial enlargement of A to show details of septal neck. **B**, **C**, **F**, IGPS coll. cat. no. 112821: B, longitudinal (slightly oblique) section; C, partial enlargement of B to show details of siphuncle; F, partial enlargement of B to show details of septal neck. Scale bar is 6 mm in A, B; 3 mm in C, D; 0.6 mm in E, F.

Subfamily Spyroceratinae Shimizu and Obata, 1935 Genus **Gordonoceras** Teichert and Glenister, 1953 *Type species.—Gordonoceras bondi* Teichert and Glenister, 1953.

Gordonoceras? sp. Figures 3.E–3.G

Description.—A single fragment of longiconic cyrtocone is available for this study; it consists of adoral phragmocone with the last septum and apical body chamber; conch diameter attains at least 16.5 mm. Camerae very short; septal curvature deep. Siphuncle situates near midway between conch axis and margin; septal neck achoanitic in the last septum and cyrtochoanitic to suborthochoanitic in the second one from the last; connecting rings more or less inflated. No endosiphuncular and cameral deposits preserved.

Material examined.—IGPS coll. cat. no. 112822.

Occurrence.—This specimen was collected in flat block of limestone deriving from the Ludlow G3 Member at locality 5.

Discussion.—In its general conch shape and siphuncular position, the fragment is suggestive of *Gordonoceras*, whose type species was described from the Silurian of Tasmania (Teichert and Glenister, 1953), but is not complete to enough for a confident identification.

Genus **Subdoloceras** Kröger, 2008 Type species.—Subdoloceras tafilaltense Kröger, 2008.

Subdoloceras sp. Figures 5.A–5.F

Description.—Two fragmentary phragmocones are available in this study; they are longiconic orthocones with moderate expansion for the order and circular transverse sections; the larger specimen (IGPS coll. cat. no. 112821) attains 12 mm in conch diameter. Camerae short, having maximum width per length ratios of 3.1–4.8; septa deeply concaved and form oblique sutures. Siphuncle subcentral in position; septal necks suborthochoanitic, short; connecting rings mostly cylindrical with abrupt constrictions at septal foramina. No endosiphuncular and cameral deposits preserved.

Material examined.—IGPS coll. cat. nos. 112817, 112821.

Occurrence.—A specimen (IGPS coll. cat. no. 112817) was collected from limestone pebble in limestone conglomerate belonging to the Wenlock (late early Silurian) G2 Member at locality 1. Another specimen (IGPS coll. cat. no. 112821) occurs in flat block of limestone deriving from the Ludlow G3 Member at locality 5.

Discussion.-The Gionyama specimens display

similarities to *Subdoloceras* that was previously known from the Pragian to upper Emsian (Lower Devonian) of Morocco (Krōger, 2008), especially in their cameral length and siphuncular structure. However, the fragmentary nature of the present species prevents identification in the specific level.

Acknowledgements

The author is particularly grateful to the late Takashi Hamada, who focused my attention on the Gionyama fauna and provided the information of fossil locality and geology in the Kuraoka area. I sincerely thank Tomio Adachi and Yasuyoshi Hirata for their donations of part of the cephalopod material described in this study. Special thanks also go to Toshifumi Komatsu and Gengo Tanaka for their supports during the field work. This paper has benefited from the criticisms of Masayuki Ehiro.

References

- Barskov, I. S., 1963, System and phylogeny of pseudorthoceratids. Biulleten Moskovskogo Obshchestva Ispytatelei Prirody, Otdel Geologicheskii, vol. 38, p. 149, 150. (in Russian)
- Barskov, I. S., 1966, Cephalopods of Late Ordovician and Silurian of Kazakhstan and Middle Asia, 200 p. Avtoreferat Dissertatsii na Soiskanie Uchenoi Stepeni Kandidata Geologo-Mineralogicheskikh Nauk. Izdatel'stovo Moskovskogo Universitete, Moscow. (in Russian)
- Barskov, I. S., 1972, *Late Ordovician and Silurian cephalopod mollusks of Kazakhstan and Middle Asia*, 112 p. Akademia Nauk SSSR, Moscow. (in Russian)
- Barrande, J., 1866, Systême Silurien du Centre de la Bohême, Première Patie: Recherches Paléontologiques, Volume 2, Classe des Mollusques, Ordre des Céphalopodes, 2me Série, pls. 108–244. Prague and Paris.
- Barrande, J., 1870, Systême Silurien du Centre de la Bohême, Première Patie: Recherches Paléontologiques, Volume 2, Classe des Mollusques, Ordre des Céphalopodes, 4me Série, pls. 351–460. Prague and Paris.
- Chen, J., Liu, G. and Chen, T., 1981, Silurian nautiloid faunas of Central and Southwestern China. *Memoirs of Nanjing Institute of Geology and Palaeontology*, no. 13, p. 1–104, pls. 1–40. (in Chinese with English abstract)
- Dzik, J., 1984, Phylogeny of the Nautiloidea. *Palaeontologia Polonica*, no. 45, p. 1–219, pls. 1–47.
- Flower, R. H., 1945, Classification of Devonian nautiloids. *The American Midland Naturalist*, vol. 33, p. 675–724, pls. 1–5.
- Flower, R. H., 1957, Studies of the Actinocerida, 100 p., 13 pls. State Bureau of Mines and Mineral Resources, New Mexico Institute of Mining and Technology Campus Station, Memoir 2, Socorro, New Mexico.
- Flower, R. H. and Caster, K. E., 1935, The stratigraphy and paleontology of northwestern Pennsylvania. Part II: Paleontology. Section A: The cephalopod fauna of the Conewango Series of the Upper Devonian in New York and Pennsylvania. *Bulletins of American Paleontology*, vol. 22, p. 199–271.

- Foerste, A. F., 1932, Black River and other cephalopods from Minnesota, Wisconsin, Michigan, and Ontario (Part I). *Denison University Bulletin, Journal of the Scientific Laboratories*, vol. 27, p. 47–136, pls. 7–37.
- Hamada, T., 1958, Japanese Halysitidae. Journal of the Faculty of Science, the University of Tokyo, Section 2, vol. 11, p. 91–114, pls. 6–10.
- Hamada, T., 1959a, Gotlandian stratigraphy of the Outer Zone of Southwest Japan. *The Journal of the Geological Society of Japan*, vol. 65, p. 688–700. (in Japanese with English abstract)
- Hamada, T., 1959b, Gotlandian shelly fauna from Southwest Japan (I). Coronocephalus kobayashii, a new species from the Kuraoka district, Kyûshû. Japanese Journal of Geology and Geography, vol. 30, p. 71–88, pl. 6.
- Hamada, T., 1961, The Middle Palaeozoic group of Japan and its bearing on her geological history. *Journal of the Faculty of Science, the University of Tokyo, Section 2*, vol. 13, p. 1–79.
- Kido, E., 2010, Silurian rugose corals from the Kurosegawa Terrane, Southwest Japan, and the first occurrence of *Neobrachyelasma. Journal of Paleontology*, vol. 84, p. 466– 476.
- Kisselev, G. N., 1969, Silurian cephalopods of the Bol'shezemel'skaya Tundra of the northern Urals. Avtoreferat Kandidat Dissertatsiya, Izdatel'stovoLeningradskogo Universiteta, Leningrad, p. 1–22. (in Russian)
- Kisselev, G. N. and Gnoli, M., 1992, About revision of the genus Michelinoceras Foerste, 1932 (Cephalopoda). Vestnik Sankt-Petersburgoko Universiteta, Series 7, vol. 2, p. 74, 75. (in Russian)
- Kobayashi, T., 1983, On the Silurian cephalopod faunule from Mt. Yokokura, Kochi Prefecture, Shikoku, Japan. *Proceedings of the Japan Academy*, Series B, vol. 59, p. 293–295.
- Kobayashi, T., 1984, Silurian cephalopods from Yokokura-yama, Kochi Prefecture, Japan. *Research Reports of the Kôchi University*, vol. 32, p. 240–251, pls. 3, 4.
- Kobayashi, T., 1988, The Silurian cephalopods and trilobites from the Yokokurayama Formation, Shikoku, Japan. *Proceedings of the Japan Academy*, *Series B*, vol. 64, p. 1–8.
- Kobayashi, T. and Hamada, T., 1985, On the Silurian trilobites and cephalopods of Mt. Yokokura, Shikoku, Japan. *Proceedings of the Japan Academy*, Series B, vol. 61, p. 345–347.
- Kobayashi, T. and Hamada, T., 1987, Silurian trilobites of Japan: In comparison with Asian, Pacific and other areas. *Palaeontological Society of Japan, Special Papers*, no. 18, p. 1–155, pls. 1–12.
- Kröger, B., 2008, Nautiloids before and during the origin of ammonoids in a Siluro-Devonian section in the Tafilalt, Anti-

Atlas, Morocco. The Palaeontological Association, Special Papers in Palaeontology, no. 79, p. 1–110.

- Kuhn, O., 1940, Paläozoologie in Tabellen, 50 p. Fischer, Jena.
- M'Coy, F., 1844, A Synopsis of the Characters of the Carboniferous Limestone Fossils of Ireland, 274 p. Privately published. (reissued by Williams and Norgate, London, 1862)
- Niko, S., 2021, Late Silurian orthocerid cephalopods from the Suberidani Group, Tokushima Prefecture, Southwest Japan. *Bulletin of the Tohoku University Museum*, no. 20, p. 1–7.
- Niko, S. and Adachi, T., 2013, Silurian halysitids (Coelenterata: Tabulata) from the Gionyama Formation, Miyazaki Prefecture, Japan. *Bulletin of the National Museum of Nature and Science*, vol. 39, p. 17–41.
- Niko, S., Hamada, T. and Yasui, T., 1989, Silurian Orthocerataceae (Mollusca: Cephalopoda) from the Yokokurayama Formation, Kurosegawa Terrane. *Transactions and Proceedings of the Palaeontological Society of Japan, New Series*, no. 154, p. 59–67.
- Niko, S., Sone, M. and Leman, M. S., 2017, Silurian cephalopods from Langkawi, Malaysia, with peri-Gondwanan faunal affinity. *Journal of Systematic Paleontology*, vol. 16, p. 595–610.
- Schindewolf, O., 1943, Über das Apikalende der Actinoceren (Cephl., Nautil.). Jahrbuch des Reichsamt für Bodenforschung für das Jahr 1941, vol. 62, p. 207–247, pls. 8–11.
- Shimizu, S. and Obata, T., 1935, New genera of Gotlandian and Ordovician nautiloids. *The Journal of the Shanghai Science Institute*, *Section 2*, vol. 2, p. 1–10.
- Sweet, W. C., 1964, Nautiloidea—Orthocerida. *In*, Teichert, C., Kummel, B., Sweet, W. C., Stenzel, H. B., Furnish, W. M., Glenister, B. F., Erben, H. K., Moore, R. C. and Nodine Zeller, D. E., *Mollusca 3, Cephalopoda General Features, Endoceratoidea, Actinoceratoidea, Nautiloidea & Bactritoidea.* Moore, R. C. *ed., Treatise on Invertebrate Paleontology, Part K*, p. K216–K261. Geological Society of America, New York, and University of Kansas Press, Lawrence.
- Teichert, C. 1967, Major features of cephalopod evolution. In, Teichert, C. and Yochelson, E. L. eds., Essays in Paleontology & Stratigraphy. R. C. Moore Commemorative Volume, Department of Geology, University of Kansas Special Publication 2, p. 162–210. The University Press of Kansas, Lawrence and London.
- Teichert, C. and Glenister, B. F., 1953, Ordovician and Silurian cephalopods from Tasmania, Australia. *Bulletins of American Paleontology*, vol. 34, p. 1–66, pls. 1–6.
- Tokai Fossil Society, 1995, *Fossils*, *Field Selection 20*, 256 p., Hokuryukan, Tokyo. (in Japanese)

Late Devonian longiconic nautiloids from the Tobigamori Formation, Iwate Prefecture, Northeast Japan

Shuji Niko* and Masayuki Ehiro**

*Department of Environmental Studies, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima 739-8521, Japan, ** The Tohoku University Museum, Sendai 980-8578, Japan

Abstract: A geisonoceratid orthocerid, *Geisonocerina*? sp., and two pseudorthoceratid pseudorthocerids, *Spyroceras*? sp. and *Dolorthoceras* sp., are described from the Famennian (latest Devonian) shale of the Tobigamori Formation from an abandoned quarry ("Nendoyama") in the Higashiyama area, lwate Prefecture, Northeast Japan. They represent the first record of Late Devonian longiconic nautiloids in East Asia.

Introduction

Our knowledge concerning Devonian longiconic nautiloids in East Asia is very limited. Furthermore, previously described occurrences are exclusively from the Lower and Middle Devonian, including the Lochkovian parts of the Kamianama and Fukuji formations, Central Japan (Niko, 1991, 1993, 1996, 2017; Kamiya and Niko, 1997), the Emsian Daliancun and Liujing formations, Guangxi, South China (Lai and Zhang, 1988), the Eifelian rocks of Inner Mongolia, North China (Liang, 1981), the probably Eifelian part of the Nakazato Formation (Niko, 1989), and the Givetian Qizigiao Formation, Hunan, South China (Lai and Zhang, 1988). The present Late Devonian specimens from the Tobigamori Formation in Northeast Japan are therefore noteworthy even though their preservation is not always satisfactory. The purpose of this paper is to describe three species, Geisonocerina? sp., Spyroceras? sp. and Dolorthoceras sp., based on the Tobigamori material for further taxonomic, biostratigraphic, and biogeographic studies.

Abbreviations.-The following two abbreviations are used to indicate the repositories of nautiloid specimens. IGPS: Tohoku University Museum, Sendai, Miyagi Prefecture. MSK: Museum of Stones and Kenji Museum (Ishi to Kenji no Museum), Ichinoseki, Iwate Prefecture.

Geologic setting and occurrence

The Tobigamori Formation is a thick sedimentary unit (800–1800 m) composed of black shales with intercalations of tuff, sandstone and conglomerate (Noda, 1934; Tachibana, 1952; Onuki, 1956). It unconformably overlies ultramafic rocks probably associated with the Motai metamorphic rocks (Sasaki et al., 1997). The relationship between the formation and the overlying Karaumedate Formation is inferred to be conformably (Okami et al., 1973; Osawa et al., 1981; Kawamura and Kawamura, 1989). Since the first discovery of the Late Devonian brachiopod Spirifer verneuili by Yabe and Nada (1933), the diverse fauna and flora ranging in age from the Famennian to the Tournaisian (latest Devonian to earliest Carboniferous) have been recorded from the Tobigamori Formation as stated below. The main Famennian part is characterized by abundant occurrences of the index brachiopods Cyrtospirifer and Sinospirifer (Hayasaka and Minato, 1954; Noda and Tachibana, 1959; Minato and Kato, 1979) and the vascular terrestrial plants Leptophloeum and Cyclostigma (Tachibana, 1950, 1966). The exact age determinations of the upper to uppermost parts ware done by Ehiro and Takaizumi (1992). They confirm that the Devonian-Carboniferous boundary situates within the Tobigamori Formation by findings of the Famennian ammonoids, Costaclymenia sp. and Platyclymenia (Platyclymenia) sp., from the 25-35 m below of the top of the Tobigamori Formation and the Tournaisian ammonoid Protocanites sp. from a float block derived from the 5-10 m below of ditto.

The examined specimens of longiconic nautiloids come from shale exposures of an abandoned quarry, which is called "Nendoyama", at Minamiiwairi, Nagasaka in the Higashiyama area, Ichinoseki City, Iwate Prefecture (see fig. 1 in Ehiro and Takaizumi, 1992, for its geographic position). Among them, a specimen of *Geisonocerina*? sp. (IGPS coll. cat. no. 112841) was collected from talus deposits, whose original horizon is situated approximately 35 m below the top of the formation. Although the exact stratigraphic origin of the other specimens MSK19921211, 19950501, 20230801-1, 2 (*Geisonocerina*? sp.), MSK19950501 (*Spyroceras*? sp.) and MSK19950501

(*Dolorthoceras* sp.) are unknown, the lithologic characters of their matrixes indicate that they derive from the upper part indicating Famennian age.

Systematic paleontology

Subclass Orthoceratoidea Teichert, 1967 Order Orthocerida Kuhn, 1940 Family Geisonoceratidae Zhuravleva, 1959 Genus **Geisonocerina** Foerste, 1935 Type species.–Orthoceras wauwatosense Whitfield, 1882.

Geisonocerina? sp.

Figures 1.A-1.C, 1.H

Description.-Three fragmentary specimens were examined; they are longiconic orthocones with very gradual expansion and circular transverse sections; the largest specimen is a phragmocone (IGPS coll. cat. no. 112841), which measures 81 mm in length and approximately 9 mm in reconstructed diameter; conch surface ornamented by fine transverse lirae. Camerae relatively long with approximately 1.7 in form ratio (maximum reconstructed width per length). Sutures directly transverse. No siphuncular structure preserved.

Material examined.-- MSK20230801-1, 2. IGPS coll. cat. no. 112841.

Discussion.-Accurate generic identification of the specimens is difficult because of their poor preservation, but they are tentatively included in the geisonoceratid genus, *Geisonocerina*, on the basis of the possessions of the very gradually expanding conchs, the fine surface lirae, and the relatively long camerae.

Order Pseudorthocerida Barskov, 1963 Family Pseudorthoceratidae Flower and Caster, 1935 Subfamily Spyroceratinae Shimizu and Obata, 1935 Genus **Spyroceras** Hyatt, 1884 *Type species.–Orthoceras crotalum* Hall, 1861.

Spyroceras? sp. Figures 1.D, 1.E

Description.—A single fragment of deformed body chamber was examined; it is an annulated orthocone with gradual expansion and 69 mm in length; on the premise that this body chamber is conical, the reconstructed conch diameter is approximately 25 mm near the adoral end; peristome not preserved; annulations oblique at the present (by post mortem deformation) with rounded crests; no distinct surface ornamentation detected both on and between annulations.

Material examined.- MSK19950501.

Discussion.–This poorly preserved specimen is tentatively placed in the pseudorthoceratid genus, *Spyroceras*, because it is comparable in external morphology with the body chamber of *S. melolineatum* Niko, 1996, described from the Lower Devonian Takaharagawa Member, the Fukuji Formation in Gifu Prefecture. Similar annulations also occur in *Cycloceras* M'Coy, 1844, but its type species, *Orthoceras laevigatum* M'Coy, 1844, has the much slenderer conch and occurs exclusively in the Carboniferous.

Genus **Dolorthoceras** Miller, 1931 Type species.–Dolorthoceras circulare Miller, 1931.

Dolorthoceras sp. Figures 1.F, 1.G, 1.I

Description.–A single specimen of imperfect phragmocone was examined; it is a longiconic orthocone with moderate expansion and 75 mm in length; assuming that the conch shape is conical, the reconstructed diameter is approximately 11 mm near adoral end; conch surface smooth lacking distinct ornamentation. Camerae short indicating 3.2–3.7 in form ratio (maximum reconstructed width per length). Septa relatively shallow. Sutures oblique because of post mortem deformation. Siphuncle nearly central in position and consists of suborthochoanitic(?) septal necks and weakly inflated connecting rings.

Material examined.- MSK19921211.

Discussion.–Although the specimen is poorly preserved, its gross conch shape, short camerae and connecting ring shape warrant the generic assignment to *Dolorthoceras*. This species may resemble some Late Devonian species, such as *D. elegans* Flower, 1939, *D. palmerae* (Flower and Caster, 1935) and *D. solitarium* Flower, 1939, but it is not

←

Figure 1. A–C, H. *Geisonocerina*? sp. A, B, SKM20230801-1: A, side view of conch; B, partial enlargement of A to show details of surface ornamentation: C, IGPS coll. cat. no. 112841, side view of phragmocone, silicone rubber cast: H, SKM20230801-2, side view of phragmocone, internal mold. **D, E.** *Spyroceras*? sp., body chamber, SKM19950501. D, side view, silicone rubber cast; E, side view, internal mold. **F, G, I.** *Dolorthoceras* sp., phragmocone, SKM19921211. F, side view, silicone rubber cast; G, side view, internal mold; I, partial enlargement of G to show siphuncular structure, arrow indicates connecting ring. Scale bar is 10 mm in A; 6 mm in B, H; 15 mm in C, G; 20 mm in D–F; 4.3 mm in I.

complete enough for confident comparisons.

Acknowledgements

The authors extend their thanks to the late Kiyoshi Shichida, who collected most of the nautiloid specimens examined herein. Because the present study could not have been done without his private collection, we would like to dedicate this paper to this excellent amateur fossil researcher. We thank Jun Sugawara for providing us the opportunity to examine the specimens owned by the Museum of Stones and Kenji and Eiwa Kogyo Co., Ltd. for allowing our field work in the property of the company. Christian Klug made helpful comments on an earlier draft of the manuscript.

References

- Barskov, I. S., 1963, System and phylogeny of pseudorthoceratids. Biulleten Moskovskogo Obshchestva Ispytatelei Prirody, Otdel Geologicheskii, vol. 38, p. 149–150. (in Russian)
- Ehiro, M. and Takaizumi, Y., 1992, Late Devonian and Early Carboniferous ammonoids from the Tobigamori Formation in the Southern Kitakami Massif, Northeast Japan and their stratigraphic significance. *The Journal of the Geological Society* of Japan, vol. 98, p. 197–204, pl. 1.
- Flower, R. H., 1939, Study of the Pseudorthoceratidae. Palaeontographica Americana, vol. 2, p. 1–214, pls. 1–9.
- Flower, R. H. and Caster, K. E., 1935, The stratigraphy and paleontology of northwestern Pennsylvania. Part II: Paleontology. Section A: The cephalopod fauna of the Conewango Series of the Upper Devonian in New York and Pennsylvania. *Bulletins of American Paleontology*, vol. 22, p. 199–271.
- Foerste, A. F., 1935, Bighorn and related cephalopods. Journal of the Scientific Laboratories, Denison University, vol. 30, p. 1–96, pls. 1–22.
- Hall, J., 1861, Report of the Superintendent of the Geological Survey, Exhibiting the Progress of the Work. January 1, 1861, 52 p. L. A. Calkins & Co., Madison, Wisconsin.
- Hayasaka, I. and Minato, M., 1954, A *Sinospirifer*-faunule from the Abukuma Plateau, Northeast Japan, in comparison with the so-called Upper Devonian brachiopod faunule of the Kitakami Mountains. *Transactions and Proceedings of the Palaeontological Society of Japan, New Series*, no. 16, p. 201–211, pl. 26.
- Hyatt, A., 1883–1884, Genera of fossil cephalopods. Proceedings of the Boston Society of Natural History, vol. 22, p. 253–338.
- Kamiya, T. and Niko, S., 1997, Devonian orthoconic cephalopods from the Oise Valley in the uppermost reaches of the Kuzuryu River, Fukui Prefecture. *Chigaku Kenkyu (Journal* of Geoscience), vol. 46, p. 83–86. (in Japanese with English abstract)
- Kawamura, T. and Kawamura, M., 1989, The Carboniferous System of the South Kitakami Terrane, Northeast Japan, (part 1) – summary of the stratigraphy–. *Chikyu Kagaku (Earth Science)*, vol. 43, p. 84–97. (in Japanese with English abstract)
- Kuhn, O., 1940, Paläozoologie in Tabellen, 50 p. Fischer, Jena.

- Lai, C. and Zhang, Z., 1988, Nautiloids from Early and Middle Devonian of Hunan and Guangxi. *Professional Papers of Stratigraphy and Palaeontology*, vol. 21, p. 29–47, pls. 1–4. (in Chinese with English abstract)
- Liang, Z., 1981, Middle Devonian nautiloids from the central part of Daxinganling. Bulletin of the Shenyang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, vol. 2, p. 137–145. (in Chinese with English abstract)
- M'Coy, F., 1844, A Synopsis of the Characters of the Carboniferous Limestone Fossils of Ireland, 274 p. Privately published. (reissued by Williams and Norgate, London, 1862)
- Miller, A. K., 1931, Two new genera of Late Paleozoic cephalopods from Central Asia. *American Journal of Science*, Series 5, vol. 22, p. 417–425.
- Minato, M. and Kato, M., 1979, Chapter 2e, Upper Devonian, 2e3) Palaeontology. *In*, Minato, M. *et al.*, eds., *Variscan Geohistory* of Northern Japan: The Abean Orogeny, p. 70–71, Tokai University Press, Tokyo.
- Niko, S., 1989, A new Devonian cephalopod from the Nakazato Formation of the southern Kitakami Mountains. *Transactions and Proceedings of the Palaeontological Society of Japan*, *New Series*, no. 156, p. 291–295.
- Niko, S., 1991, *Plicatoceras*, a new lamellorthoceratid cephalopod genus from the Gedinnian (Early Devonian) of Central Japan. *Journal of Paleontology*, vol. 65, p. 917–919.
- Niko, S., 1993, Orthoceratid cephalopods from the Early Devonian Fukuji Formation of Gifu Prefecture, Central Japan. *Journal of Paleontology*, vol. 67, p. 210–216.
- Niko, S., 1996, Pseudorthoceratid cephalopods from the Early Devonian Fukuji Formation of Gifu Prefecture, Central Japan. *Transactions and Proceedings of the Palaeontological Society of Japan, New Series*, no. 181, p. 347–360.
- Niko, S., 2017, Early Devonian orthocerid cephalopods from the Kamianama Formation, Fukui Prefecture, Central Japan. *Bulletin of the Tohoku University Museum*, no. 16, p. 1–4.
- Noda, M., 1934, Geology of the environs of Nagasaka, Kitakami Mountainland. *The Journal of the Geological Society of Tôkyô*, vol. 41, p. 431–456. (in Japanese)
- Noda, M. and Tachibana, K., 1959, Some Upper Devonian cyrtospiriferids from the Nagasaka district, Kitakami Mountainland. Science Reports of the Faculty of Arts and Literature, Nagasaki University, no. 10, p. 15–21, pl. 1.
- Okami, K., Kawakami, T. and Murata, M., 1973, Conglomerate of the Karaumedate Formation in the Kitakami Massif, Northeast Japan. *The Science Reports of the Tohoku University, Second Series, Special Volume*, no. 6, p. 457–464.
- Onuki, Y., 1956, Geology of the Kitakami Massif. In, Explanatory Text of the Geology of Iwate Prefecture, II. Iwate Prefecture, Morioka, p. 1–187. (in Japanese)
- Osawa, M., Nagura, M., Tazawa, J. and Mori, K., 1981, Geology of the Nagasaka district, Southern Kitakami Mountains, with special reference to the Devonian-Carboniferous and Carboniferous-Permian boundaries. *Abstracts of the 88th Annual Meeting of the Geological Society of Japan*, p. 177. (in Japanese)
- Sasaki, M., Tsukada, K. and Otoh, S., 1997, An outcrop of unconformity at the base of the Upper Devonian Tobigamori Formation, Southern Kitakami Mountains. *The Journal of the Geological Society of Japan*, vol. 103, p. 647–655, pls. 1, 2. (in Japanese with English abstract)
- Shimizu, S. and Obata, T., 1935, New genera of Gotlandian and Ordovician nautiloids. *The Journal of the Shanghai Science*

Institute, Section 2, vol. 2, p. 1-10.

- Tachibana, K., 1950, Devonian plants first discovered in Japan. Proceedings of the Japan Academy, vol. 26, p. 54–60.
- Tachibana, K., 1952, On the Tobigamori Group of the Nagasaka district, Kitakami Mountainland. *The Journal of the Geological Society of Japan*, vol. 58, p. 353–360. (in Japanese)
- Tachibana, K. 1966, On the age and distribution of *Leptophloeum* contained in the Tobigamori flora. *The Annual Report of the Faculty of Education, University of Iwate*, vol. 26, p. 9–22, 1pl. (in Japanese with English abstract)
- Teichert, C. 1967, Major features of cephalopod evolution. *In*, Teichert, C. and Yochelson, E. L. eds., *Essays in Paleontology* & Stratigraphy. R. C. Moore Commemorative Volume,

Department of Geology, University of Kansas Special Publication 2, p. 162–210. The University Press of Kansas, Lawrence and London.

- Whitfield, R. P., 1882, Paleontology. *In, Geology of Wisconsin. Survey of 1873-1879, Volume 4.* State of Wisconsin, Commissioners of Public Printing, Madison, Wisconsin, p. 163–349, pls. 1–27.
- Yabe, H. and Nada, M., 1933, Discovery of *Spirifer verneuili* Murchison in Japan. *Proceedings of the Imperial Academy*, vol. 9, p. 521–523.
- Zhuravleva, F. A., 1959, On the family Michelinoceratidae Flower, 1945. *Materialy k Osnovam Paleontologii*, vol. 3, p. 47–50 (in Russian)

Two Olenekian (Early Triassic) species of longiconic cephalopods from the Osawa Formation, Miyagi Prefecture, Northeast Japan

Shuji Niko* and Masayuki Ehiro**

*Department of Environmental Studies, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima 739-8521, Japan,

**The Tohoku University Museum, Sendai 980-8578, Japan

Abstract: Two species of longiconic cephalopods, *Pseudotemperoceras*? sp. and *Trematoceras* osawaense sp. nov., are described from laminated mudstones of the Lower Triassic Osawa Formation at Asadanuki, Tome City, Miyagi Prefecture, Northeast Japan. The new species is differentiated from other species assigned to *Trematoceras* by the morphological combination of its very gradually expanding conchs with a 4° - 5° apical angle, moderate to relatively long cameral lengths, nearly central siphuncular position, and well-developed cameral deposits. Biostratigraphically, *T. osawaense* provides a regional index suggesting the latest Olenekian in the South Kitakami Belt.

Introduction

Following Bando and Ehiro (1982) and Ehiro (2022b), the present study is the third fascicle of our publication series concerning the latest Olenekian (late Early Triassic) cephalopods from the uppermost part of the Osawa Formation, lower Inai Group, in the South Kitakami Belt, Northeast Japan. We describe two longiconic orthoceratoid species, namely *Pseudotemperoceras*? sp. and *Trematoceras osawaense* sp. nov., based on material collected from black laminated mudstones at the upper reaches of Nameshi-zawa Valley in Asadanuki, Tome City, Miyagi Prefecture. Their detailed geologic, stratigraphic, and geographic settings are given in the proceeding papers (Bando and Ehiro, 1982; Ehiro, 2022b).

Repository.–All specimens examined for this paper are reposited in the Toholu University Museum, Sendai (prefixed IGPS).

Systematic paleontology

Subclass Orthoceratoidea Teichert, 1967 Order Orthocerida Kuhn, 1940 Family Geisonoceratidae Zhuravleva, 1959 Genus **Pseudotemperoceras** Schastlivtceva, 1986 *Type species.–Pseudotemperoceras pulchrum* Schastlivtceva, 1986.

Pseudotemperoceras? sp. Figures 1.A, 1.B

Description.-Two incomplete and flattened phragmocones were examined; they are longiconic orthocones with moderate expansion; the largest specimen (IGPS coll. cat. no. 112845) attains 45 mm in length and approximately 12 mm in reconstructed diameter assuming it has a circular cross section; conch surface lacks distinct ornamentation. Camerae short exhibiting approximately 3.6 in reconstructed width/length ratio; septal curvature relatively deep. Sutures directly transverse. Siphuncle cannot observable.

Material examined.-IGPS coll. cat. nos. 112843, 112845.

Discussion.–Among the previously known Triassic genera of longiconic nautiloids, the preserved characters of the present species such as its moderately expanding conch and short camerae, correspond to those of *Pseudotemperoceras*, whose type species was described from the Olenekian of Verkhoyansk, northeastern Siberia (Schastlivtceva, 1986). We keep the genus assignment open for the Osawa species as it is questionable because of the poor preservation until better material becomes available.

Order Pseudorthocerida Barskov, 1963 Superfamily Pseudorthoceratoidea Flower and Caster, 1935 Family Trematoceratidae Zakharov, 1996 Genus **Trematoceras** Eichwald, 1851 *Type species.–Orthocera* [sic] *elegans* Münster, 1841.

Trematoceras osawaense sp. nov. Figures 1.C–1.J

Diagnosis.–Species of *Trematoceras* with very small apical angle between 4° to 5°, circular conch cross sections, and fine transverse lirae as surface ornamentation; camerae long to very long with approximately 1–2 in form ratio (maximum width per length); siphuncular position nearly central; ratio of siphuncular diameter per corresponding conch diameter at septal foramen attains 0.2; septal necks suborthochoanitic and very short; cameral deposits well developed.

Description.-The type series consists of two incomplete and more or less deformed phragmocones; an apical shell, 33 mm in length, is designated as the holotype (IGPS coll. cat. no. 112844; Figures 1.E–J), that exhibits a slightly cyrtoconic appearance and misalignment of camerae probably by post mortem deformation; conch cross sections of an apical part of the holotype are circular; the paratype is another deformed longiconic orthocone; it is a more adoral part than the holotype with 46 mm in length and approximately 4 mm in reconstructed conch diameter near the adoral end; the angle of conch expansion is very small, approximately 4° in the holotype; reconstructed angle of ditto in the paratype is approximately 5°; conch surface ornamented by fine transverse lirae; apex not preserved. Sutures directly transverse; septal curvature shallow; camerae long to very long for the superfamily; approximate numbers of camerae per corresponding conch diameter are 1-1.5 in the holotype and 1.5-2 in the paratype (i.e. form ratios (maximum width per length) approximately 1-2). Siphuncle nearly central in position; septal necks suborthochoanitic and very short having 0.25 mm in the holotype; widths of septal foramina are large for the genus, 0.31-0.46 mm in the holotype, and ratio of their diameter per corresponding conch diameter attains 0.2: connecting rings are not preserved. Cameral deposits well developed, differentiated into episeptal-mural and hyposeptal types, and partly indicate mamillary growth; no endosiphuncular deposits detected.

Material examined.–Holotype, IGPS coll. cat. no. 112844. Paratype, IGPS coll.cat. no. 112842.

Etymology.–The specific name is derived from the Osawa Formation.

Discussion.-Trematoceras osawaense sp. nov. most closely resembles T. clarum Schastlivtceva (1986, p. 79, 80, pl. 1, figs. 2, 3; 1988, p. 65, 66, pl. 2, figs. 8a, b, v) from the Olenekian of Verkhoyansk, northeastern Siberia, especially their apical angles, cameral lengths and siphuncular positions are nearly identical. The principal differences between them are as follows: cameral deposits are well developed in T. osawaense, whereas they are not observable in T. clarum, and slightly larger diameter of the siphuncle in T. osawaense than that of T. clarum, whose ratio of siphuncular diameter per corresponding conch diameter is 0.15. Trematoceras mangyshlakense Schastlivtceva (1981, p. 79, 80, pl. 1, figs. 3, 4a, b, v; T. mangishlakense [sic], 1988, p. 66, pl. 2, figs. 6a, b, 7a, b), described from the Olenekian of Mangystau, Kazakhstan, is also similar to T. osawaense, but this species indicates slightly larger angles of conch expansion, (6°-7°), than those of the new species and a subcentral position of the siphuncle.

The new species is well different from the previously known two *Trematoceras* species from the South Kitakami Belt (*T. hikichii* Niko, Ehiro and Takaizumi, 2016, p. 1-3, figs. 1.1–1.7 and *T. watanabei* Niko and Ehiro, 2020, p. 2, 3, 5, figs. 2.A–2.M; see the following chapter for their geologic settings) by its much finer transverse lirae than those of *T. hikichii* and slightly larger apical angles (4°–5° versus 3° in *T. watanabei*) at the corresponding ontogenetic stages. In addition, the fused endosiphuncular deposits developed in *T. watanabei* are not recognized in *T. osawaense*.

Biostratigraphic significance

Except for the present *Trematoceras osawaense* sp. nov., two species of the genus have been described from the Inai Group in the South Kitakami Belt as mentioned above. *Trematoceras hikichii* and *T. osawaense* occur in the middle and uppermost parts of the Osawa Formation. The diverse ammonoid fauna comprises the taxa *Hemilecanites discus, Tardicolumbites* aff. *tardicolumbus, Yvesgalleticeras* sp., *Hellenites elegans, Epiceltites* sp. (described originally as *Columbites parisianus*), *Nordophiceratoides bartolinae*, etc. These taxa indicate that the former horizon belongs the upper Olenekian (Ehiro *et al.*, 2016). By contrast, ammonoids associated with the present

 \rightarrow

Figure 1. A, B. *Pseudotemperoceras*? sp. A, side view of phragmocone, silicone rubber cast, IGPS coll. cat. no. 112843: B, side view of phragmocone, IGPS coll. cat. no. 112845, internal mold. **C–J.** *Trematoceras osawaense* sp. nov. C, D, paratype, IGPS coll. cat. no. 112842, adoral phragmocone: C, lateral view; D, partial enlargement of C to show details of surface ornamentation and sutures: E–J, holotype, IGPS coll. cat. no. 112844, apical phragmocone: E, magnified detail of H to show septal character; F, lateral view, silicone rubber cast; G, magnified detail of I to show siphuncular position and details of cameral deposits; H, lateral view, internal mold; I, longitudinal thin section; J, magnified detail of I to show septal neck shape. Scale bar is 12 mm in A, C, F, H; 15 mm in B; 6 mm in D, E, I; 3 mm in G; 0.6 mm in J.

Early Triassic cephalopods from Miyagi

new species in the latter horizon are *Pseudosageceras multilobatum, Procarnites kokeni, Japonites* cf. *meridianus* and *Eodanubites* aff. *xinyuanensis*, indicating the latest Olenekian *Eodanubites* Zone (Ehiro, 2022b). *Trematoceras watanabei* occurs in the early Anisian (early middle Triassic) mudstone at the middle part of the Fukkoshi Formation together with abundant and diverse ammonoids, such as *Japonites* cf. *meridianus, Danubites floriani, Paradanubites kansa, Procladiscites brancoi, Leiophyllites pitamaha, L. suessi,* and *Ussuriphyllites amurensis* (Ehiro, 2022a). Their stratigraphic and chronologic distributions are given in Figure 2. These three endemic orthoceratoid species can be considered as regional index fossils around the Olenekian/ Anisian boundary in the South Kitakami Belt.

Figure 2. Simplified columnar section of the Lower-Middle Triassic Inai Group in the South Kitakami Belt, Northeast Japan, showing the stratigraphic horizons of three *Trematoceras* species.

Acknowledgements

Our sincere appreciation is extended to Yuta Watanabe, who discovered and donated the holotype of *Trematoceras osawaense* sp. nov. We also appreciate the helpful reviews by Christian Klug.

References

- Bando, Y. and Ehiro, M., 1982, On some Lower Triassic ammonites from the Osawa Formation at Asadanuki, Towa-cho, Tomegun, Miyagi Prefecture, Northeast Japan. *Transactions and Proceedings of the Palaeontological Society of Japan, New Series*, no. 127, p. 375–385, pl. 60.
- Barskov, I. S., 1963, System and phylogeny of pseudorthoceratids. Biulleten Moskovskogo Obshchestva Ispytatelei Prirody, Otdel Geologicheskii, vol. 38, p. 149–150. (in Russian)
- Ehiro, M., 2022a, Early Anisian (Aegean) ammonoids from the Fukkoshi Formation (Inai Group) with special reference to the Olenekian/Anisian boundary in the South Kitakami Belt, Northeast Japan. *Bulletin of the Tohoku University Museum*, no. 21, p. 39–84.
- Ehiro, M., 2022b, Latest Olenekian (Early Triassic) ammonoids from the uppermost part of the Osawa Formation (Inai Group) in the South Kitakami Belt, Northeast Japan. *Paleontological Research*, vol. 26, p. 137–157.
- Ehiro, M., Sasaki, O. and Kano, H., 2016, Ammonoid fauna of the late Olenekian Osawa Formation in the Utatsu area, South Kitakami Belt, Northeast Japan. *Paleontological Research*, vol. 20, p. 90–104.
- Eichwald, E. von, 1851, Naturhistorische Bemerkungen, als Beitrag zur vergleichenden Geognosie, auf einer Reise durch die Eifel, Tyrol, Ilalien, Sizilien und Algier. *Nouveauk Mémirs de la Société de Naturalistes d'Histoire de Moscou*, vol. 9, p. 1–464.
- Flower, R. H. and Caster, K. E., 1935, The stratigraphy and paleontology of northwestern Pennsylvania. Part II: Paleontology. Section A: The cephalopod fauna of the Conewango Series of the Upper Devonian in New York and Pennsylvania. *Bulletins of American Paleontology*, vol. 22, p. 199–271.
- Kuhn, O., 1940, Paläozoologie in Tabellen, 50 p. Fischer, Jena.
- Münster, G. zu, 1841, II. Beschreibung und Abbildung der in den Kalkmergelschichten von St. Cassian gefunden Versteinerungen. *In*, Wissmann, H. L., and Münster, G. zu, *Beiträge zur Geognosie und Petrefacten-Kunde des Südöstlichen Tirol's Vorzüglich der Schichten von St. Cassian*, p. 25–152, pls. 1–16, Bayreuth.
- Niko, S. and Ehiro, M., 2020, *Trematoceras watanabei*, a new orthoconic nautiloid species from the Middle Triassic Fukkoshi Formation, Miyagi Prefecture, Northeast Japan. *Bulletin of the Tohoku University Museum*, no. 19, p. 1–6.
- Niko, S., Ehiro, M. and Takaizumi, K., 2016, *Trematoceras hikichii* sp. nov., an Early Triassic orthocerid cephalopod from the Osawa Formation, Miyagi Prefecture, Northeast Japan. *Bulletin of the Tohoku University Museum*, no. 15, p. 1–4.
- Schastlivtceva, N. P., 1981, On systematic position of Triassic orthoceratoids of the southern USSR. *Biulleten Moskovskogo Obschestva Ispytatelei Prirody, Otdel Geologicheskii*, vol. 56, p. 76–82. (in Russian)
- Schastlivtceva, N. P., 1986, Some Triassic orthoceratids and

nautilids from North-East USSR. *Biulleten Moskovskogo Obschestva Ispytatelei Prirody, Otdel Geologicheskii*, vol. 61, p. 122–129. (in Russian)

- Schastlivtceva, N. P., 1988, Triassic orthoceratids and nautilids from USSR. Akademii Nauk SSSR, Trudy Paleontologicheskogo Instituta, vol. 229, p. 1–104, pls. 1–8. (in Russian)
- Teichert, C., 1967, Major features of cephalopod evolution. *In*, Teichert, C. and Yochelson, E. L. eds., Essays in Paleontology & Stratigraphy. R. C. Moore Commemorative Volume,

Department of Geology, University of Kansas Special Publication 2, p. 162–210. The University Press of Kansas, Lawrence and London.

- Zakharov, Y. D., 1996, Orthocerid and ammonoid shell structure: Its bearing cephalopod classification. *Bulletin of the National Science Museum, Series C*, vol. 22, p. 11–35.
- Zhuravleva, F. A., 1959, On the family Michelinoceratidae Flower, 1945. *Materialy k Osnovam Paleontologii*, vol. 3, p. 47–48 (in Russian)

A new species of *Parisicaris* (Microcarididae, Thylacocephala) from the upper Olenekian (Lower Triassic) Osawa Formation in the South Kitakami Belt, Northeast Japan

Masayuki Ehiro* and Harumasa Kano

The Tohoku University Museum, Sendai 980-8578 Japan, *Corresponding author (e-mail: masayuki.ehiro.d4@tohoku.ac.jp)

Abstract: A new thylacocephalan species of the microcarid genus *Parisicaris, Parisicaris naoyai*, is described from the upper Olenekian (Lower Triassic) Osawa Formation in the South Kitakami Belt, Northeast Japan. It belongs to family Microcarididae and is associated with the thylacocephalan fauna, comprising the genera *Ankitokazocaris, Concavicaris, Kitakamicaris, Miyagicaris* and *Paraostenia*. The generic classification of family Microcarididae and the species composition of genus *Parisicaris* are also discussed.

Introduction

Thylacocephala is a class commonly considered to belong to subphylum Crustacea (e.g. Lange et al., 2001). Although it has a long stratigraphic record ranging from the Silurian (or Cambrian) to the Cretaceous and has a wide geographic distribution, only approximately 30 genera have been described at present (Schram, 2014; Ehiro et al., 2015, 2019). Before the mid-2010s, Triassic thylacocephalans had been reported mainly from various localities in southern Europe of Austria, Italy, Spain and Slovenia, whereas the occurrences of other regions are rare only from Madagascar and South China. In particular, the Early Triassic records are limited to Madagascar (Ehiro et al., 2015). However, over the past decade, information of Triassic thylacocephalans has increased markedly, and new occurrences from the Lower Triassic have been reported from Northeast Japan (Ehiro et al., 2015, 2019), Western Australia (Haig et al., 2015), southern China (Ji et al., 2017, 2021), Idaho, USA (Brayard et al., 2017, Charbonnier et al., 2019 and Laville et al., 2021), as well as Middle Triassic strata from southern China (Feldmann et al., 2015) and northern Italy (Teruzzi and Muscio, 2018). These informations suggest that thylacocephalans were already diversified and widely distributed in low- to mid-latitude areas worldwide during the Early Triassic (Ehiro et al., 2019).

Family Microcarididae is a major component of the Triassic thylacocephalan fauna; this family was present throughout the Triassic, and broadly distributed worldwide. In this study, we describe a new species of the microcarid genus *Parisicaris*, *Parisicaris naoyai*, from the Lower Triassic (upper Olenekian) Osawa Formation distributed in the South Kitakami Belt of Northeast Japan, and discuss the generic classification of family Microcarididae and species composition of genus *Parisicaris*.

Geological setting and materials

Among the Japanese Islands, thylacocephalans have been reported only from the Lower Triassic Osawa Formation, distributed in the Minami-sanriku area (Miyagi Prefecture) of the South Kitakami Belt. The Osawa Formation is 250-350 m thick, and mainly composed of laminated mudstone. The late Olenekian ammonoids are abundant from the lower to upper parts (e.g. Bando and Shimoyama, 1974; Ehiro et al., 2016; Shigeta, 2022) and uppermost part of the formation (Ehiro, 2022). Thylacocephalans have been collected from three localities (Motoyoshi, Tatezaki A and Tatezaki B; Figure 1) in the lower to middle parts of the formation (Ehiro et al., 2015, 2019). However, most samples have been obtained from the Tatezaki B locality, with very few derived from other two localities. The fossil horizon of the Tatezaki B locality is considered to represent middle part of the Osawa Formation, and six species belonging to five genera have been described from an interval 2 to 4 m above the base of the sequence in this locality (Ehiro et al., 2019): Ankitokazocaris bandoi Ehiro and Kato (Ehiro et al., 2015), Ankitokazocaris tatensis Ehiro et al., 2019, Concavicaris parva Ehiro et al., 2019, Kitakamicaris utatsuensis Ehiro and Kato (Ehiro et al., 2015), Miyagicaris costata Ehiro et al., 2019 and Ostenocaris sp. In this fauna, K. utatsuensis is dominant, comprising more than 90% of the collection. The

stratigraphy and fossil assemblages of the Osawa Formation have been described in detail in the previous researches (Ehiro et al., 2015, 2016 and 2019).

Figure 1. Index map showing the fossil locality (Tatezaki B locality) in the Utatsu area of the southern part of the Southern Kitakami Massif (South Kitakami Belt), Northeast Japan. NDB: Nedamo Belt; NKB: North Kitakami Belt; SKB: South Kitakami Belt.

Recently Laville et al. (2021) suggested that there is confusion between genus Ostenocaris Arduini et al., 1984 (originally described as Ostenia by Arduini et al., 1980) and Paraostenia Secrétan, 1985, stemming from the report of Arduini et al. (1980), in which some specimens with quite different morphology from Ostenocaris and more likely belonging to Paraostenia, were classified as Ostenia cypriformis. Therefore, Laville et al. (2021) suggested that some taxa attributed to Ostenocaris, including Ostenocaris sp. from the Osawa Formation, should be ascribed to Paraostenia. We agree that Ostenocaris sp. from the Osawa Formation belong to the genus Paraostenia. Laville et al. (2021) also raised questions concerning the taxonomy of some genera and species from the Osawa Formation, including C. parva, K. utatsuensis and M. costata. However, we do not agree with this latter proposal, as discussed later in this study.

The present specimens of Thylacocephala, described as *P. naoyai* sp. nov., were collected from the Tatezaki B locality in association with the thylacocepalan species, mentioned above. Therefore, the Osawa thylacocephalan fauna comprises seven species belonging to six genera: *A. bandoi*, *A. tatensis*, *C. parva*, *K. utatsuensis*, *M. costata*, *P.* naoyai and Paraostenia sp.

Figure 2. Morphological terminology and dimensions for the carapace in lateral view. *Aav*, angle (degree) of anteroventral process; *am*, anterior margin; *dm*, dorsal midline; *H*, *Ha*, *Hp*, maximum, anterior and posterior carapace height (mm), respectively; *L*, carapace length (mm); *pm*, posterior margin; *vm*, ventral margin.

The morphological terminology, dimensions and their abbreviations follow Ehiro et al. (2015; Figure 2), but using the term "dorsal midline" instead of "dorsal margin" following the observation and advocacy of Laville et al. (2021) that the thylacocephalan carapace ("shield" in Laville et al., 2021) is univalve, and not bivalve. Arduini (1988) reported that the carapace of Thylacocephala is univalve, as there is no hinge between the both sides of the carapace of "*Atropicaris*" in dorsal view (butterfly position), as also described by Laville et al. (2021). We agree with them because we also have some thylacocephalan specimens in butterfly position or equivalent to it, the dorsal midlines of them are only carinate without hinge lines (Figure 3); therefore, we used the terms "left side" and "right side" (of the carapace) rather than "left valve" and "right valve" (Ehiro et al., 2015, 2019).

Systematic description

The specimens described in this study are held in the Institute of Geology and Paleontology, Tohoku University, Sendai (IGPS; Tohoku University Museum) and the Utatsu Ichthyosaur Museum (UIM; Educational Committee of Minamisanriku Town, Miyagi Prefecture).

Class Thylacocephala Pinna, Arduini, Pesarini and Teruzzi, 1982 Family Microcarididae Schram, 2014

Included genera.— Ferrecaris Calzada and Mañé, 1993, *Kitakamicaris* Ehiro and Kato (Ehiro et al., 2015), *Microcaris* Pinna, 1974, *Miyagicaris* Ehiro et al., 2019 and *Parisicaris* Charbonnier (Charbonnier et al., 2019).

Discussion.— Schram (2014) proposed the new family Microcarididae, as part of a working set of hypotheses

Figure 3. Dorsal views (in butterfly position) of thylacocephalan specimens from the Tatezaki B locality showing univalve nature of carapaces.

1, *Ankitokazocaris* cf. *bandoi* Ehiro and Kato in Ehiro et al., 2015, IGPS coll. cat. no. 112846; 1a, dorsal view; 1b, enlarged view of the dorsal midline of 1a; **2**, *Kitakamicaris utatsuensis* Ehiro and Kato in Ehiro et al., 2015, IGPS coll. cat. no. 111456; 2a, dorsal view; 2b, enlarged view of the dorsal midline of 2a. *dm*, dorsal midline.

on the taxonomic subdivision of Thylacocephala, which included the Triassic genera *Atropicaris* Arduini and Brasca, 1984, *Ferrecaris* and *Microcaris*, and the Cretaceous genus *Thylacocephalus* Lange et al., 2001. The diagnostic characters listed by Schram (2014) are as follows: small to modest in size; thin pointed rostrum, anteriorly directed; carapace surface with rugations or terraces.

Hegna et al. (2014) compared the Cretaceous genus *Polzia* Hegna et al., 2014 with *Microcaris*. However, with the proposal of the new microcarid genus *Kitakamicaris* from the Triassic of Northeast Japan, Ehiro et al. (2015) claimed that

the genera Thylacocephalus and Polzia should be excluded from this family, because they have a distinct posterior spine, which can be compared to those of Cretaceous genera belonging to family Protozoeidae Schrum, 2014 (e.g. Protozoea Dames, 1886 and Pseuderichthus Dames, 1886). Charbonnier et al. (2017) added the Cretaceous genus Keelicaris Charbonnier et al., 2017 and Jurassic genus Rugocaris Tintori et al., 1986, together with Thylacocephalus, to family Microcarididae on the grounds that they have remarkable ribs on the carapace, which are similar to other genera of Microcarididae. However, as noted by Ji et al. (2021), there remains some confusion about the classification of Keelicaris and Thylacocephalus. Later, Charbonnier et al. (2019) proposed a new microcarid genus, Parisicaris, from the Lower Triassic of Idaho, and excluded Keelicaris, Rugocaris and Thylacocephalus from the Microcarididae. Ehiro et al. (2019) added the new genus Miyagicaris, associated with Kitakamicaris, from the Lower Triassic of Northeast Japan.

Tintori et al. (1986) suggested that Atropicaris rostrata Arduini and Brasca, 1984 could be considered a junior synonym of Microcaris minuta Pinna, 1974, as these species have the same carapace outline and carapace ornamentation, differing only in size. Arduini (1988) rejected this view based mainly on the observations that Microcaris bears a well-developed, strong and pointed rostrum, whereas Atropicaris has a thin rostrum that ends in a spoonlike expansion; that the carapace of Microcaris is covered by fine, irregularly developed, straight transverse ribs, whereas Atropicaris shows strong, developed sigmoidal ribs; and that Microcaris and Atropicaris differ in the variability of their forms, with Microcaris specimens showing wide variability within a very small number of individuals, whereas Atropicaris is characterized by the near-homogeneity of its form. Tintori et al. (1986) reported that differences in ornamentation between Atropicaris and Microcaris depend exclusively on specimen size, but large specimens of Microcaris comparable to those of Atropicaris retained the same characteristics as smaller individuals. Recently, Ji et al. (2021) suggested that morphological differences between Microcaris and Atropicaris specified by Arduini (1988) resulted from preservation and intraspecific variability, and concluded that genus Atropicaris is a junior synonym of genus Microcaris, while accepting the specific validity of "A." rostrata (as Microcaris rostrata [Arduini and Brasca]).

Microcaris minuta specimens described by Pinna (1974, 1976), Arduini (1988), and Dalla Vecchia and Muscio (1990) showed broad "intraspecific" variability in the carapace outline. Dalla Vecchia and Muscio (1990) divided these into forms designated A–D. Form A resembles a paratype described by Pinna (1974, p. 31, fig. 16), and has a broadly rounded anteroventral margin without a remarkable

anteroventral process. Form B is characterized by a largely obtuse anteroventral process and mountain-shaped convex venter. Form C is similar to form B in the carapace outline, but has somewhat sigmoidal ribs, similar to "*Atropicaris*." The carapace outline of form D is similar to that of the holotype of *Microcaris minuta*, and has large, obtuse anteroventral process and nearly flat to broadly convex venter (Figure 4).

There are some common elements in morphology among the specimens belonging to *Microcaris* and "*Atropicaris*." The carapace height/length (*H/L*) ratio of all forms of *Microcaris* and "*Atropicaris*" are within the range of 0.4–0.5, regardless of size (Figure 5A). The anteroventral process angles (*Aav* in Laville et al., 2021) are all large and obtuse, ranging from 100° to 140°, and become larger with increasing carapace size (Figure 5B). Therefore, it is difficult to discriminate *M. minuta* forms B and C and "*A.*" *rostrata*. Furthermore, some specimens reported by Dalla Vecchia (1993) as *Microcaris minuta* have a thin rostrum ending in a spoon-like expansion and somewhat sigmoidal ribs, both of which are characteristics shared by "*Atropicaris*." Although some problems remain to be resolved and it is difficult to judge whether these morphological differences among the *Microcaris minuta* specimens are the result of intraspecific variability, we tentatively follow Ji et al. (2021) and treat *"Atropicaris" rostrata* as a species of genus *Microcaris*.

Genus *Microcaris* (including *Atropicaris*) is clearly different from other genera of Microcarididae in having the following characters (Figures 4 and 6): the base of the rostrum is connected to the anterior margin of the carapace by subangular (not circular) corners; the angle of the anteroventral process (*Aav*) is large and obtuse $(100^{\circ}-140^{\circ})$; and the posterior margin is concave, with sharply pointed dorso- and ventroposterior processes. The holotype of *M. minuta* with a broadly convex venter seems to have a narrowly rounded dorso- and ventroposterior process. However, its posterior part is somewhat poorly preserved, and a specimen reported by Arduini (1988, pl. 16, fig. 2) with nearly the same carapace outline has a pointed dorsoposterior process (ventroposterior process is not well preserved).

The monotypic genus *Ferrecaris*, the type species of which is *Ferrecaris magransi* Calzada and Mañé, 1993, described from the Ladinian bed in Spain is distinguished from other genera of Microcarididae by its acute posterior margin.

Figure 4. Sketched reconstructions of the carapaces of some species of Microcarididae.

Those of *Microcaris* and "*Atropicaris*" species were prepared from the figures of Arduini and Brasca (1984) and Arduini (1988); The posterior margin of *Microcaris minuta* form D was estimated from pl. 16, fig. 1 of Arduini (1988); those of *Parisicaris rectilineatus* and *Parisicaris triassica* are from Ji et al. (2021) and Laville et al. (2021), respectively. Scale bar is for all figures.

Figure 5. Plots of the (A) carapace height/length ratio (H/L-L) and (B) anteroventral process angle (Aav) to carapace length (L) for *Microcaris* and "*Atropicaris*" species.

However, specimens of *F. magransi* are poorly preserved and the outline of the posterior part is unclear (Calzada and Mañé, 1993, fig. 1). With the exception of the posterior end, the carapace outline and carapace ornamentation of *F. magransi* are very close to those of *M. rostrata* (Arduini and Brasca) and some specimens described as *M. minuta* by Dalla Vecchia (1993). Therefore, there remain questions about the validity of genus *Ferrecaris*.

Laville et al. (2021) claimed that the genera *Kitakamicaris* Ehiro and Kato (Ehiro et al., 2015) and *Parisicaris* Charbonnier (Charbonnier et al., 2019) are junior synonyms of *Ankitokazocaris* Arduini, 1990, and that *M. costata* Ehiro et al., 2019 may be a synonym of *K. utatsuensis* Ehiro and Kato (Ehiro et al., 2015). Laville et al. (2021) stated that *Kitakamicaris* and *Parisicaris* have a morphology diagnostic of *Ankitokazocaris*, and that the vertical ridges (ribs) that characterize these genera (*Kitakamicaris* and *Parisicaris*) may vary according to the sex, ontogeny or molting cycle of the organism, and can also be affected by the type of preservation.

However, there are obvious differences in carapace morphology between *Ankitokazocaris* and *Kitakamicaris*-*Parisicaris*. As noted in the emended diagnosis of genus *Ankitokazocaris* (Laville et al., 2021, p. 78), *Ankitokazocaris* has "a ventral margin subdivided into a sub-horizontal anterior part and a posterior part steeply descending anteroventrally," whereas *Kitakamicaris* and *Parisicaris* (and other genera belonging to family Microcarididae) have a mount-like convex ventral margin, the anterior part of which is not sub-horizontal.

The bases for the second argument, outlined above, which deny the validity of surface ornamentation as a criterion of thylacocephalan classification, are hypothetical and lack reliable evidence. Laville et al. (2021, p. 80) stated only that "the outer layer of the shield is formed of sinuous. small and thin vertical ridges (Fig. 7E-G)" in the description of the shield ornamentation of Ankitokazocaris acutirostris Arduini, 1990. However, it is difficult to find any vertical ridges or ribs in these figures. Moreover, they described that "no transversal ridges were found in A. acutirostris" (p. 88). Likewise, they also stated that "with the reinterpretation of Parisicaris as Ankitokazocaris, we show that specimens of Ankitokazocaris can be preserved as a smooth shield, with only few ridges or with a fully ornamented shield" (p. 79). No specific evidence for these claims is provided, and their figure 10A-D for "Ankitokazocaris" triassica (p. 88) may be the only case. This specimen is a very poorly preserved Parisicaris, and there are no true Ankitokazocaris specimens with vertical ribs (including poorly developed), nor Parisicaris specimens originally having a smooth carapace.

For genus Kitakamicaris, we have more than 200 specimens of K. utatsuensis, including fragmental specimens, ranging in size (carapace length) from ca. 19 to 38 mm, which are considered to represent rather wide ontogenetic stages. The ratio of H/L ranges from 0.45 to 0.55, which show only a slight decreasing tendency with increasing size (Figure 6A). The Aav concentrated around 90°, mostly in the range of 87°-93°, and is also independent of size (Figure 6B). Kitakamicaris utatsuensis specimens ranging in size from smallest (L = ca. 19 mm) to largest (L= ca. 38 mm) are shown in Figure 7. There are almost no differences in carapace outline and rib pattern, except for a slight decreasing trend in the ratio of H/L with increasing size. In addition, the number of vertical ribs of K. utatsuensis specimens is constant throughout the ontogenetic stages (Figure 6C), although the rib measurements are rough estimates due to irregular rib bifurcation and poor preservation. All fragmental specimens also show remarkable ribbing; there are no smooth or poorly ribbed specimens.

Therefore, the hypothesis of Laville et al. (2021) that genera *Kitakamicaris* and *Parisicaris* are junior synonyms of *Ankitokazocaris* is unacceptable, and we consider both *Kitakamicaris* and *Parisicaris* to be valid genera.

Miyagicaris costata Ehiro et al., 2019 has an acute (ca. 70°) *Aav* clearly different from that of *Kitakamicaris*. It is also characterized by strong, dendritically branched ribs in the anterior third of the carapace. Laville et al. (2021) suggested that the dendritic branching of ribs is ostensible, caused by deformation and fracturing. It is true that the holotype specimen of *M. costata* suffered some fracturing in its upper (dorsal) part and near posterior end; however, as

H, *L* and *Aav* data for *Microcaris* (including "*Atropicaris*") were estimated from figures of Arduini and Brasca (1984) and Arduini (1988). Those of *Parisicaris triassica* were obtained from Laville et al. (2021). *H* and *L* data for *Parisicaris rectilineatus* were obtained from Ji et al. (2021) and *Aav* data were estimated from figures of Ji et al. (2021). Data for *Kitakamicaris utatsuensis* and *Parisicaris naoyai* are provided in Appendices A and B, respectively.

Figure 7. *Kitakamicaris utatsuensis* specimens of various sizes, sampled from an outcrop in the middle part of the Osawa Formation at the Tatezaki B locality, Utatsu, Minamisanriku Town.

1, IGPS coll. cat. no. 112783 (largest specimen); 2, UIM 30604; 3, IGPS coll. cat. no. 112786; 4, IGPS coll. cat. no. 111448 (holotype); 5, IGPS coll. cat. no. 112796; 6, IGPS coll. cat. no. 111453; 7, IGPS coll. cat. no. 111481 (smallest specimen). *dm*, dorsal midline; *ls*, left side; *rs*, right side. IGPS, Institute of Geology and Paleontology, Sendai; UIM, Utatsu Ichthyosaur Museum. Scale bar is for all figures.

shown in photographs and line drawings (Ehiro et al., 2019, fig. 10A–10D), the dendritic branching in the anteroventral region was clearly not affected by fracturing. This inference is supported by the smooth continuity of the lower part of the anterior margin and anterior half of the ventral margin.

Genus Parisicaris Charbonnier in Charbonnier, Brayard and

the Paris Biota Team, 2019 *Type species.— Parisicaris triassica* Charbonnier (Charbonnier et al., 2019)

Parisicaris Charbonnier (Charbonnier et al., 2019) Microcaris (Parisicaris) Charbonnier (Charbonnier et al., 2019). Ji et al., 2021 *Ankitokazocaris* Arduini, 1990, Laville, Smith, Forel, Brayard and Charbonnier, 2021

Included species.— Parisicaris naoyai sp. nov., P. rectilineatus (Ji et al., 2021), P. triassica Charbonnier (Charbonnier et al., 2019).

Emended diagnosis.— The trapezoidal carapace has a relatively large, rounded optic notch, limited by a short thick rostrum, broadly fused with the carapace, and narrowly rounded, remarkable anteroventral process. In side view, the dorsal midline is broadly convex and the ventral margin is convex and mountain shape. The short, nearly straight posterior part is slightly inclined backward to the vertical axis, with narrowly rounded dorso- and ventroposterior processes. The carapace surface is ornamented by oblique, widely spaced ribs.

Discussion .-- Charbonnier et al. (2019) proposed a new genus Parisicaris belonging to family Microcarididae, with P. triassica as the type species. A distinctive ventral notch at the anterior part of the ventral margin, which was deemed to be a diagnostic feature of the new genus, was later interpreted as an artifact of preparation (Laville et al., 2021). Ji et al. (2021) also pointed out that this feature was related to preservation. We agree with these opinions, although specimens of Parisicaris have other morphological features that allow its taxonomic identification. Laville et al. (2021) concluded that the genus Parisicaris is a junior synonym of Ankitokazocaris Arduini, 1990, because these two genera have the same morphological characteristics. As discussed above, this inference is based on hypotheses unsupported by specific evidence and erroneous identification, and is unacceptable.

Ji et al. (2021) considered Parisicaris to be a subgenus of Microcaris Pinna, 1974, and described a new species of Microcaris, Microcaris rectilineatus Ji et al., 2021, which resembles P. triassica in carapace outline and carapace ornamentation, from the late Olenekian of South China. They stated that the carapace outline and surface ornamentation of P. triassica and "M." rectilineatus are similar to those of genus Microcaris. However, as described above, the carapace outline, particularly the angular shape of the optic notch and pointed dorso- and ventroposterior processes, and surface ornamentation characterized by dense, nearly vertical sigmoidal ribs of genus *Microcaris* are strikingly different from those of P. triassica and "M." rectilineatus (Figure 4). We consider genus Parisicaris to be valid and that "M." rectilineatus should belong to genus Parisicaris based on their similarities in carapace outline and surface ornamentation.

> Parisicaris naoyai sp. nov. Figure 8.1–8.6

Material examined.— Eight specimens, IGPS coll. cat. nos. 1112810 (holotype) and 112811–112816, and UIM 30625.

Etymology.—The specific epithet is dedicated to Naoya Takahashi, who collected and donated specimens of present new species, including the holotype.

Diagnosis.— The small carapace is trapezoidal, with a thick rostrum widely fused with the carapace. The height of the carapace is approximately half of its length. The concave anterior margin is connected at an obtuse angle to the convex, mountain-shaped ventral margin. Widely spaced, slightly convex ribs incline forward, and develop over the entire carapace surface. Some ribs penetrate into the rostrum region, bending parallel to its extension direction.

Description.— Only the carapaces are preserved. The carapace is trapezoidal in lateral view, with a small but distinct, thick rostrum that is widely fused to it. The dorsal midline is broadly convex. The broad anterior margin (optic notch) is concave and composed of semicircular upper half and nearly straight lower half. The ventral margin is convex forming a mountain-shaped, nearly symmetrical, downward bend. The anteroventral process is narrowly rounded, forming an obtuse angle. The narrow posterior margin is nearly straight and inclined slightly backward, with narrowly rounded ventroposterior and dorsoposterior processes.

The maximum height is at a position close to the center of the venter where it bends. The carapace size ranges from ca. 24 to 31 mm in length and 12 to 16 mm in height, and the *H/L* ratio ranges from 0.47 to 0.52 (usually 0.51–0.52). The *Aav* ranges from 100° to 114°.

The entire carapace surface is covered by widely spaced fine ribs, many of which are single and run nearly in parallel from near the dorsal midline to the ventral margin; however, some ribs bifurcate, and some short ribs are intercalated between the primary ribs, mainly in the ventral region. A few ribs bifurcate at two or three points. Near the lower anterior margin, the ribs are diagonal to the nearly vertical anterior margin and run from the anterior margin to the venter. The ribs are slightly convex, and inclined forward at an angle of 40°-50° to the horizontal axis of the carapace in the main part and nearly 70° near the anterior and posterior margins. Near the base of the rostrum, three to five or more ribs bend parallel to the extending direction of the rostrum and penetrate into the rostrum region (Figures 8.1d, 8.2c, 8.3c and 8.5b). Although it is difficult to accurately calculate the number of primary ribs, because of their occasional branching and poor state of preservation, it is assumed to be 30-35, including short ribs near the anteroventral corner crossing the anterior margin.

Discussion.— The newly described species, P. naoyai resembles other species of the genus, i.e. P. triassica and

Figure 8. *Parisicaris naoyai* sp. nov., from the Osawa Formation in the South Kitakami Belt, Northeast Japan. All specimens were collected from the middle part of the formation at the Tatezaki B locality.

1, IGPS coll. cat. no. 112810 (holotype); 1a, left side view; 1b, interpretive drawing of 1a; 1c, counter part of 1a (fragmental); 1d, enlarged view of the rostrum of 1c; 2, IGPS coll. cat. no. 112814; 2a, right side view; 2b, interpretive drawing of 2a; 2c, enlarged view of the rostrum of 2a; 3, IGPS coll. cat. no. 112811; 3a, right side view; 3b, interpretive drawing of 3a; 3c, enlarged view of the rostrum of 3a; 4, UIM30625, left side view 5, IGPS coll. cat. no. 112813; 5a, outer mold of right side; 5b, enlarged view of the rostrum of 5a; 6, IGPS coll. cat. no. 112815, dorsal view. Scale bars 1 cm, unless otherwise indicated.

P. rectilineatus, in having widely spaced, oblique ribs on the carapace. However, it is clearly distinguished from the latter two in having large *Aav* (100°–114°), upwardly curved ribs and ribs penetrating into the rostrum region.

Occurrence.— From an outcrop of the middle part of the Osawa Formation (upper Olenekian) to the north of Cape Tatezaki (Tatezaki locality of Ehiro et al., 2015; Tatezaki B locality of Ehiro et al., 2019), Utatsu, Minamisanriku Town, Miyagi Prefecture, Northeast Japan.

Acknowledgments

The authors express their deep gratitude to the Educational Committee of Minamisanriku Town and Abei-Gumi Co. Ltd. for their support during fieldwork. We also thank Naoya Takahashi for providing specimens including the holotype, and the members of the Tohoku University Museum for assistance in fieldwork. Hiroshi Nishi and an anonymous reviewer provided constructive comments and suggestions that helped us to improve the manuscript.

References

- Arduini, P., 1988, *Microcaris* and *Atropicaris*, two genera of the class Thylacocephala. *Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano*, vol. 129, p. 159–163.
- Arduini, P., 1990, Studies on Permo-Trias of Madagascar. 1. Thylacocephala from lower Trias of Madagascar. Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, vol. 131, p. 197–204.
- Arduini, P. and Brasca, A., 1984, Atropicaris: Nuovo genere della classe Thylacocephala. Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, vol. 125, p. 87–93.
- Arduini, P., Pinna, G. and Teruzzi, G., 1980, A new and unusual Lower Jurassic cirriped from Osteno in Lombardy: Ostenia cypriformis n. g. n. sp. Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, vol. 121, p. 360–370.
- Arduini, P., Pinna, G. and Teruzzi, G., 1984, Ostenocaris nom. nov. pro Ostenia Arduini, Pinna and Teruzzi, 1980. Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, vol. 125, p. 48.
- Bando, Y. and Shimoyama, S., 1974, Late Schythian ammonoids from the Kitakami Massif. *Transactions and Proceedings of the Palaeontogical Society of Japan, New Series*, no. 94, p. 293–312.
- Brayard, A., Krumenacker, L.J., Botting, J.P., Jenks, J.F., Bylund, K.G., Fara, E., Vennin, E., Olivier, N., Goudemand, N., Saucède, T., Charbonnier, S., Romano, C., Doguzhaeva, L., Thuy, B., Hautmann, M., Stephen, D.A., Thomazo, C. and Escarguel, G., 2017, Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna. *Science Advances*, vol. 3, e1602159.
- Calzada, S. and Mañé, R., 1993, Primera cita de un Tilacocefalo (Crustacea) en el Ladininiense espanol. *Trabajos del Museo*

Geologico del Seminario, vol. 224, p. 13-17.

- Charbonnier, S., Brayard, A. and the Paris Biota Team, 2019, New thylacocephalans from the early Triassic Paris Biota (Bear Lake County, Idaho, USA). *Geobios*, vol. 54, p. 37–43.
- Charbonnier, S., Teruzzi, G., Audo, D., Lasseron, M., Haug, C. and Haug, J.T., 2017, New thylacocephalans from the Cretaceous Lagerstätten of Lebanon. *Bulletin de la Société Géologique de France*, vol. 188, no. 19.
- Dalla Vecchia, F.M., 1993, Segnalazion di crostacel Nell'unita Fonte Santa (Triassico Sup.) presso Filettino (Lazio, Italia). Gortania - Atti del Museo Friulano di Storia Naturale, vol. 14 (1992), p. 59–69.
- Dalla Vecchia, F.M. and Muscio, G., 1990, Occurrence of Thylacocephala (Arthropoda, Crustacea) from the Upper Triassic of Carnic Prealps (N. E. Italy). *Bollettino della Societa Paleontologica Italiana*, vol. 29, p. 39–42.
- Dames, W., 1886, Ueber einige Crustaceen aus dem Kreideablagerungen des Libanon. Zeitschrift der Deutschen Geologischen Gesellschaft, vol. 38, p. 551–575.
- Ehiro, M., 2022, Latest Olenekian ammonoids from the uppermost part of the Osawa Formation (Inai Group) in the South Kitakami Belt, Northeast Japan. *Paleontological Research*, vol. 26, p. 137–157.
- Ehiro, M., Sasaki, O., Kano, H., Nemoto, J. and Kato, H., 2015, Thylacocephala (Arthropoda) from the Lower Triassic of the South Kitakami Belt, Northeast Japan. *Paleontological Research*, vol. 19, p. 269–282.
- Ehiro, M., Sasaki, O. and Kano, H., 2016, Ammonoid fauna of the upper Olenekian Osawa Formation in the Utatsu area, South Kitakami Belt, Northeast Japan. *Paleontological Research*, vol. 20, p. 90–104.
- Ehiro, M., Sasaki, O., Kano, H. and Nagase, T., 2019, Additional thylacocephalans (Arthropoda) from the Lower Triassic (upper Olenekian) Osawa Formation of the South Kitakami Belt, Northeast Japan. *Palaeoworld*, vol. 28, p. 320–333.
- Feldmann, R.M., Schweitzer, C.E., Hu, S.X., Huang, J.Y., Zhou, C.Y., Zhang, Q.Y., Wen, W., Xie, T. and Maguire, E., 2015, Spatial distribution of Crustacea and associated organisms in the Luoping Biota (Anisian, Middle Triassic), Yunnan Province, China: evidence of periodic mass kills. *Journal of Paleontology*, vol. 89, p. 1022–1037.
- Haig, D.W., Martin, S.K., Mory, A.J., McLoughlin, S., Backhouse, J., Berrell, R.W., Kear, B.P., Hall, R., Foster, C.B., Shi, G.R. and Bevana, J.C., 2015, Early Triassic (early Olenekian) life in the interior of East Gondwana: mixed marine–terrestrial biota from the Kockatea Shale, Western Australia. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, vol. 417, p. 511–533.
- Hegna, T.A., Vega, F.J. and González-Rodríguez, K.A., 2014, First Mesozoic thylacocephalans (Arthropoda, ?Crustacea; Cretaceous) in the Western Hemisphere: new discoveries from the Muhi Quarry Lagerstätte. *Journal of Paleontology*, vol. 88, p. 606–616.
- Ji, C., Tintori, A., Jiang, D.Y. and Motani, R., 2017, New species of Thylacocephala (Arthropoda) from the Spathian (Lower Triassic) of Chaohu, Anhui Province of China. *PalZ*, vol. 91, p. 171–184.
- Ji, C., Tintori, A., Jiang, D., Motani, R. and Federico Confortini, F., 2021, New Thylacocephala (Crustacea) assemblage from the Spathian (Lower Triassic) of Majiashan (Chaohu, Anhui Province, South China). *Journal of Paleontology*, vol. 95, p. 305–319.
- Lange, S., Hof, C.H. J., Schram, F.R. and Steeman, A., 2001, New
genus and species from the Cretaceous of Lebanon links the Thylacocephala to the Crustacea. *Palaeontology*, vol. 44, p. 905–912.

- Laville, T., Smith, C.P.A., Forel, M.-B., Brayard, A. and Charbonnier, S., 2021, Review of early Triassic Thylacocephala. *Rivista Italiana di Paleontologia e Stratigrafia*, vol. 127, p. 73–101.
- Pinna, G., 1974, I Crostacei della fauna Triassica di Cene in Val Seriana (Bergamo). Atti Società italiana di Scienze naturali e del Museo civico di Storia naturale di Milano, vol. 21, p. 7–33.
- Pinna, G., 1976, I crostacei Triassici dell'alta Valvestino (Brescia). Natura Breaciana, vol. 13, p. 33–42.
- Pinna, G., Arduini, P., Pesarini, C. and Teruzzi, G., 1982, Thylacocephala: una nuova classe di crostacei fossili. Atti della Società italiana di Scienze naturali e del Museo civico di Storia naturale di Milano, vol. 123, p. 469–482.
- Schram, F.R., 2014, Family level classification within Thylacocephala, with comments on their evolution and possible

relationships. Crustaceana, vol. 87, p. 340-363.

- Secrétan, S., 1985, Conchyliocarida, a class of fossil crustaceans: relationships to malacostraca and postulated behavior. *Transactions of the Royal Society of Edinburgh: Earth Sciences*, vol. 76, p. 381–389.
- Shigeta, Y., 2022, Revision of early Spathian (late Olenekian, Early Triassic) ammonoids from the Osawa Formation at Akaushi in the Motoyoshi area, South Kitakami Belt, Northeast Japan. *Paleontological Research*, vol. 26, p. 405–419.
- Teruzzi, G. and Muscio, G., 2018, Thylacocephalans from the Anisian (middle Triassic) of the Carnic Alps. *Gortania*, vol. 40, p. 49–55.
- Tintori, A., Bigi, E., Crugnola, G. and Danini, G., 1986, A new Jurassic Thylacocephala *Rugocaris indunensis* gen. n. sp. n. and its paleoecological significance. *Rivista Italiana di Paleontologia e Stratigrafia*, vol. 92, p. 239–250.

Appendix A. Measurements of *Kitakamicaris utatsuensis* Ehiro and Kato (Ehiro et al., 2015), all collected from the Olenekian Osawa Formation at the Tatezaki B locality in the Utatsu area, South Kitakami Belt, Northeast Japan. IGPS, Institute of Geology and Paleontology, Tohoku University, Sendai (Tohoku University Museum); UIM, Utatsu Ichthyosaur Museum. Dimensional abbreviations are provided in Figure 2. Rib numbers are rough estimates.

registered number	L	H	H/L	Ha	Нр	Aav	number of ribs	registered number	L	H	H/L	Ha	Нр	Aav	number of ribs
IGPS 111448	28.5	13.1	0.46	8.4	3?	90	48-49	IGPS 112787	26.0	14.0	0.54	7.0	3.0	.87	
111451	22.5	11.5	0.51	7.5	4.5	92	47+	112788	26.0	12.5	0.48	7.0	3.5	93	47-48
111452	23.0	11.2	0.49	6.0	4?	94	50-51	112789	29.0	14.2	0.49	9.0	3?	89	50±
111453	23.5	11.0	0.47	5.8?	3?	1111	47-48	112790	31.5	15?	0.48	11.0	3.5	92	53±
111454	24.0	11.2	0.47	6.5	4?	1.194	47-48	112791	26.0	12.5	0.48	7.0	4.0	91	47±
111457	32.5	12.7	0.39	9.5	4.0?	91	47+	112792	29.0	14.5	0.50	9.0	4.5	93	
111458	20.5	9?	0.44	6.5?	2.8	1.00	47+	112793	23.4	13.2	0.56	7.8	2.5?	90	49-50
111459	26.2	13.0	0.50	7.0	4.5	92	44?	112794	24.0	12.0	0.50	7.2	4.0	88	46-47
111462	21.0	10.8	0.51	5.7	3?	89	54-55	112795	24.0	12.0	0.50	8.5	3?	88	
111463	19.0	9.7	0.51	5.6	3?	89	47?	112796	24.5	11.5	0.47	6.5	4.0	87	46-48
111464	30.3	15.2	0.50	9.0	5.8?	1.00	+	112797	25.2	13.5	0.54	9.0	4.2	91	45-46
111465	27.4	13.4	0.49	7.8	3.2?	88	52±	112798	23.0	11.5	0.50	7.5	3.5?	92	46±
111466	35.2	15.5	0.44	10.3	4.5	90	51-52	112799	29.0	12.0	0.41	6.0	3?	90	1.1.1.1.1
111467	31.2	15.3	0.49	9.6	4.2	88	49	112800	21.0	10.5	0.50	6.0	3.0	94	48±
111469	22.2	10.8	0.49	7.5	2.7	87	47+	112801	28.5	11.5	0.40	7.0	3.5	87?	52±
111471	21.4	10.5	0.49	7.6	tran			112802	26.0	12.7	0.49	7.0	4.0	89?	_
111472	28.2	12.0	0.43	6.0	3.0	1000	100 The 1	112803	26.5	14.0	0.53	8.0?	4?	89	
111474	29.0	15.4	0.53	7.7	4.0	91	46-47	112804	34.2	15.8	0.46	6.3		91	50
111478	27.1	13.0	0.48	6.8	2.5	88	1	112805	22.5	10.6	0.47	7.3	3?	90	48-49
111480	23.6	12.0	0.51	6.5	2.8?	87	41?	112806	24.5	13.2	0.45	7.8	2?	89	52
111481	18.7	8.7	0.47	5.7	2?	90	46+	112807	23.7	12.8	0.54	7.1	4.0	89	46-47
111482	19.5	10.1	0.52	5.5	2?	88	43?	112808	26.2	12.7	0.48	7.4	3.7	92	
111486	27.0	14?	0.52	7.5	11.1	88	49-50	112809	25.5	14.1	0.55	7.5	4?	87	45±
111487	20.3	10.0	0.49	7.2	3?	93	48+	A summer 171	1		111				1
111489	29.0	15.0	0.52	8.3	4.0	88	46-47	UIM 30604	33.5	15.2	0.45	8.7	3.7	90	46-47
111490	26.8	13.2	0.49	8.0	3.7	89	44-45	30605	25.7	14.0?	0.54	9.0	3.5?	90	1.00.00
112782	31.8	16.7	0.53	11.9	6.2	91	50-51	30607	34.0	16.8	0.49	10.5	3.4	89	50-51
112783	37.8	17.2	0.46	9.5	6.0	92	45-48?	30608	20.6	9.5	0.46	5.5	11.11		1.000
112784	30.5	14.8	0.49	8.5	4.5	88	46-47	30609	21.6	11.0	0.50	6.8	3.5?	87	
112785	29.0	ca.13	0.45	ca.9.5	7.5		50	30610	19.5	8.8	0.45	5.7			
112786	30.5	15.5	0.51	8.0	5.0	87	43-44		1.00		1.20			-	

Appendix B. Measurements of *Parisicaris naoyai* sp. nov. collected from the Olenekian Osawa Formation at the Tatezaki B locality in the Utatsu area, South Kitakami Belt, Northeast Japan. Rib numbers are rough estimates.

registered number	L	Н	H/L	На	Hр	Aav	number of ribs	
IGPS 112810	29.7	15.0	0.51	8.5	4.5	100	31-33	
112811	28.5	14.3	0.5	8.7	3	106	29-31	
112812	ca.25	13.5	0.54?	9.5	ca.4	114	2	
112813	ca.30	YPT		9.5	-	113		
112814	24.2	14.2	0.59	9.0	3.5?	102	35+	
112815	32+	1		127		1.22		
112816	15+			1.22		1 - 1		
UIM 30625	27.0	14.5	0.51	9.8	3?	111	32	

青森県山野峠遺跡出土の土器棺等の再検討 Reexamination of the jar coffin excavated from the Sannotoge site in Aomori Prefecture

鹿又 喜隆*・青木 飛楠子 **・永瀬 史人 ***・澤田 純明 ****・佐伯 史子 ****・児玉 大成 *****

* 東北大学大学院文学研究科 ** ランスタッド株式会社 *** さいたま市教育委員会 **** 新潟医療福祉大学自然人類学研究所 ***** 青森市教育委員会

 Yoshitaka Kanomata*, Hinako Aoki**, Fumihito Nagase***, Junmei Sawada****, Fumiko Saeki**** and Daisei Kodama*****

*Graduate School of Arts and Letters, Tohoku University, **Randstad Ltd., ***Saitama City Education Board, ****Institute of Physical Anthropology, Niigata University of Health and Welfare, *****Aomori City Education Board

Abstract: This paper summarizes the results of reorganizing excavated materials and survey records from the Sannotoge site (formerly Kugurizaka site) in Aomori City, Aomori Prefecture. Several earthenware coffin tombs were discovered at the site in 1933, and Professor Sadakichi Kita of Tohoku Imperial University conducted an excavation survey. As a result, it was revealed that there was one or two earthenware coffins inside each stone chamber made of stone slabs belonging to the late Jomon period, and that it also contained human bones. The stone chambers were arranged in rows, revealing a unique burial method. Some of the materials from the excavation were brought back to Tohoku University, but no detailed report was made after that. In this paper, we will report on the details of these materials for the first time 90 years since their excavation, and attempt to reevaluate the Sannotoge site from a modern perspective. Specific results include: (1) we were able to present various materials that Prof. Kita brought back. (2) The earthenware coffin was missing some of the fragments after the discovery, and it was in a more complete form when it was discovered. (3) The shallow bowl is most likely the pottery A shown in the sketch (Figure 1). (4) Earthenware coffins are constructed using the integrated layout method, and the construction procedure can be restored. (5) The earthenware coffin was painted red, but the lower half of the outer surface and the inner surface below the rim were not painted. (6) The minimum number of human individuals contained in the earthenware coffin was three in total, one child and two adults, and there were no gnaw marks at all, indicating that the remains were in an environment where they were less likely to be attacked by animals at the time of skeletalization. (7) Some of the human bones have been found to have a red coloration, suggesting that they were coated with red pigment during reburial. (8) Most of the stone bars are made from unprocessed natural stone.

1. はじめに

本論は青森県青森市山野峠遺跡(久栗坂遺跡)の出土品 と記録の再整理の成果をまとめたものである。1933年に 山野峠遺跡で土器棺墓が発見され、青森県史蹟調査委員で あった佐々木新七氏に報告があった。その後、東北帝国大 学の喜田貞吉氏は佐々木氏を訪問し、当遺跡の発掘調査を 実施した。その結果、扁平な石材で四方および天井をめぐ らした小石室が6基検出された(喜田1934a、図1:葛西 2002)。小石室の中から計12個の土器棺が出土した。これ

らの土器棺は赤彩が施され、それぞれ大きさが異なり、精 粗があり、その中の3個には人骨が内包されていたが(註 1)、その後、江坂輝彌氏によって再調査が行われた(江坂 1967a)。その結果、1933年発見の石棺墓と並列して、6基 の石棺墓が新たに発見された。さらに、1970年と1981年 に青森市教育委員会が再調査を実施し、1981年の調査で 新たにもう一つの石棺墓が見つかった(青森市教育委員会 1983)。江坂氏の調査や青森市教育委員会による調査で出土 した資料は詳細な報告がなされてきたが、喜田氏が東北大 学に持ち帰った資料については現在まで全容が報告なされ

図1 山野峠遺跡調査区スケッチ(葛西 2002 より)

るに至っていない。そこで、本論では、出土品の詳細な説 明と図面の提示を行うと共に、当時の写真記録を加えてそ の出土状況を説明したい。なお、各節の文末に文責者を括 弧書きで記した。(鹿又)

2. 山野峠遺跡資料のアーカイブと土器復元作業

(1) 経緯

筆者の一人である鹿又は東北大学考古学研究室の古写真 や乾板写真のデジタル化を2014年に開始した。その過程で 山野峠遺跡の古写真4枚を発見し(図2~5)、未公開の写 真(図2、5)が含まれていることから、その記録の重要性 を意識した。その後、2015年度に鹿又が東北大学埋蔵文化 財調査室に山野峠遺跡の土器棺の復元を依頼し、同室の白 石浩子氏が土器棺の復元作業を担当した。復元作業は2015 年6月から開始され、2016年3月に復元が完了した。復元 された土器の写真は同室の菅野智則氏によって写真撮影が 進められた(図7)。2018年に執筆者の一人である青木が 実測図を作成した(青木飛楠子2020『縄文時代後晩期の墓 制研究-青森県山野峠遺跡出土資料を中心に-』令和元年 度卒業論文)。復元された土器棺や古写真は2022年度の企 画展などで使用され、活用が始まっている(鹿又2022、鹿 又ほか2023)。また、土器棺について永瀬が2021年12月 13日と2023年2月14日に3D化に必要な写真撮影を実 施した。その後、鹿又が本学の収蔵資料を悉皆的に調査し、 2023年11月に石棒と人骨が収蔵庫に保管されていること を確認した。これまで、山野峠遺跡の出土品の中から土器 2点と人骨が東北大学に持ち帰られたことが述べられてい た(喜田1934a、江坂1968、葛西1975、2002、2006b等)。 この持ち帰られた人骨については「2人分」が甕棺に納め

図2 山野峠遺跡の発掘調査風景1

図3 山野峠遺跡の発掘調査風景2

図4 山野峠遺跡の発掘調査風景3

られていたとの記載がある(葛西 1975)が、石棒が持ち帰 られたことは上記文献には記載されていなかった。そこで、 それらの遺物の写真撮影を鹿又が改めて行った。2023 年 12 月 2 日に澤田が人骨の鑑定を開始し、12 月 26 日に児玉が 土器棺の赤彩状況を観察し、本報告に加えた。

(2) 写真アーカイブ

最初に古写真の記録を参考に、改めて山野峠遺跡の発見 や調査の経緯を振り返りたい。今回の古写真の記録から付 加された情報には下線を付している。

山野峠遺跡は青森市久栗坂字山辺に位置する。当初は久 栗坂遺跡と呼称された。浅虫温泉から南西に進んだ田頭山 と弁財山との間を過ぎて、山野地区に通じる坂道の峠にあ る。1933年11月17日に坂道の拡張工事に際して偶然発見 された。当初、土器棺は道路の西側に2個、東側に2個見 つかったが、鍬に当たって壊れてしまい、現在は詳細を知

図 5 山野峠遺跡の発掘調査風景 4

ることが出来ない。11月23日に青森県史蹟調査委員であっ た佐々木新七氏は、土器棺が見つかった場所の背後を発掘 した。その結果、扁平な石材で四方および天井を巡らした 石室が3基発見された。また、最も南に位置する石室に2 個、中央と北の石室にそれぞれ1個の土器棺を発見した。 東北大学の喜田貞吉氏は佐々木氏を訪問し、当遺跡の発掘 調査を実施した。その時の写真が図2である。調査地と思 われる場所には男性15名程が居り、その周辺に少女を伴っ た女性2名(左端)や少年1名(右端)の姿も見える。掘 り出されたと思われる不整形な扁平石が25個ほど斜面の下 に集められている。調査地の傍らには木材で組まれた箱が あり、資料を入れるために用意されていたと思われる。図3 は、土器棺を観察する喜田氏の姿を示している。喜田氏の 論考(1934a)に掲載の写真と同一である。また、この写真は、 昭和8年(1933年)11月28日の河北新報に掲載された写 真と同じものである(葛西 2006a)。喜田氏はいつも通りの 山高帽をかぶった和装であり、常に持ち歩いている信玄袋 を携帯し、資料か手帳を手に、煙草をふかしている。<u>この</u> 写真の土器棺の向きは、図7-dの向きと一致する。そして、 現在は欠けているこの土器棺の左側の部分は、元々は欠け ていなかったことが分かる。図4はこの土器が完掘された 様子を示している。喜田氏(1934a)に掲載の写真は、これ と同じ方向から撮影されたものである。この<u>写真の撮影方</u> 向は図5とほぼ一緒である。やはり土器の左下の部分は残っ ていたことが明瞭に分かる。また、土器の内部に土壌が詰 まっている様子もうかがえる。図5は土器を全て取り外し て、中の土壌を残した状態である。土器の底面付近に白色 の人骨が見えるが、その状態は一部砕片化しており、必ず しも保存状態が良いとは言えない。写真からは人骨の部位 などは判断しがたい。

山野峠遺跡の遺物の共伴関係はミネルヴァ論争(1936年) の当事者である喜田氏の見解に大きな影響を与えていると 思われ(喜田1934b追記)、当時の河北新報の記事には「久 栗坂から発見されたアイヌ族の古墳」と書かれている(葛 西2006a)。また、石棺に伴う石棒「金精様」と古銭(寛永、 永樂銭)の共伴関係を強く意識している。人骨に関しては 「腐色はしてゐたが立派に人骨が入つてゐた」と記載があり、 図5の状況を物語っている。そして「歯がソックリ附着し てゐる顎骨もあり、骨の咀嚼面から判断して若い人の骨だ」 と記載している。この人骨を喜田氏が東北大学に持ち帰り、 東北大医学部の長谷部言人氏の鑑定を求めていると書かれ ている(喜田1934a)。

喜田氏の記述(1934a)では、金精様が出た所に見当をつけて鍬を入れると必ず石室を掘り当てたことから「陽石と 甕とには密接の関係があるものらしい」と述べている。出 土状況のスケッチをみると(図1)、図の上段のAとBは共 伴する小土器である。<u>葛西氏(2002、2006b)では、図1</u> のA、Bに当たる土器は、当初道路の西側と東側に2個ずつ 発見された甕形土器と推定されているが、それは誤りであ り、以下で述べるように本論で示すこの浅鉢がAに該当す る。喜田の文章では、甕形土器と小土器は明確に区別して 記載されている。

喜田が指摘するように、東側の土器棺の側から石皿と石 棒が一対となり、伏せた石皿の下に石棒が置かれた状態で 見つかっているという。図面には石棒を示す金精様の記載 があるが、石皿との関係は不明である。上段の図で斜線が 入っている土器棺には人骨が内包されている。出土した全 ての土器棺は朱塗りであった。

喜田が持ち帰った土器棺は図1-cにあたり、⑤の石室から出土したとされる(葛西 2002、2006b)。また、下記で 詳述する浅鉢はA、Bの小土器のどちらかと推定されるが、 Aの土器は復元中との記載があるので、おそらくAの小土 器のうちのどちらか、あるいはその両者と思われる。

本論で紹介する土器は、土器棺1点と、浅鉢1点である。

前者は上記の通り、破片の状態で保管されていたものを、 2015 年度に復元修復を行ったものである。(鹿又・青木)

3. 出土遺物

(1) 土器棺(図6、7)

器高 67.7 cm、口径 29.5 cm、胴部最大径 51 cm (内部直径 47 cm)、底径 25.8 cmを呈する大型の壺形土器である。江坂氏 (1968)が記載の法量とほぼ一致する。胎土中には径 5 mm以 下の長石を含んでいる。色調は明褐色である。焼成は良好で、 底部付近には黒斑がある。口縁部には橋状把手が付されて いる。底部は平底で網代圧痕(ござ目編み)が見られる。

土器棺は輪積み法によって形成され、粘土紐の幅はおよ そ4~6cmである。器面の調整は縦ミガキが多く、胴部下 半の隆帯の下は横ミガキがなされる。底部付近になると、 縦ミガキに戻る。橋状把手においても横ミガキが主体であ り、一部縦ミガキをされた後に横ミガキをされた部位があ る。文様の区画と区間の間は縦ミガキであるが、口縁と底 部には横ナデがみられる。

口縁部と頸部には横に走る沈線が引かれ、その間を縦位 の沈線で繋ぎ、内部に竹管による刺突文が施される。5つ の橋状把手を繋ぐ隆帯の内側はクランク状の沈線文が描か れる。胴部の文様は5単位であり、各単位内では上下で文 様が異なる。上部の文様は弓状の沈線文であり、下部の文 様は変形渦巻文である。粘土紐で隆帯を付けた後、その両 脇を沈線で囲んでいる。それぞれの隆帯が交差する点には、 円形の貼付文が付けられ、中心には竹管による刺突文が施 される。単位と単位を区切る隆帯の中央には、沈線が施さ れる。

把手下部の舌状の隆帯と、胴中央の円形の貼付文は、指 で押して付けられている。沈線には重なる部分があり、少 なくとも1度引いた沈線の上に再度沈線を引いている。

5単位の文様はほぼ同じであるが、細部で違いがみられ る。その1つは、それぞれの面で描かれる文様の順番である。 また、上部の区画の中央にある縦に走る2本の沈線を結ぶ 線にも違いがあり、S字状に繋ぐものと、横向きの弧線で 繋ぐものがある。縦に走る2本の沈線を挟む弓状の沈線文 は、片側に2本施される面と、1本のみ施される面がある。 区画と頸部の文様を繋ぐ隆帯上、区画と胴下部を繋ぐ隆帯 上、口縁部と頸部の間に施される刺突文の数は、3つの場合 と4つの場合がある。また、頸部に施される舌状の隆帯も 施されていない面が1つある。

内面は口縁部から底部付近まで横ミガキが施される。内 面の底部付近は主に横ナデ調整である。

胎土に含まれる混和材は、彩色やミガキの影響で分かり 難い部分が多いが、内面の底部を見ると、直径 1mm未満の石 英や角閃石などの反射鉱物が認められる。(青木)

図6 山野峠遺跡出土土器棺

図7 山野峠遺跡出土土器棺

(2) 浅鉢(図8、図9-1,2)

破片で出土したものであるが、全体の形状をある程度復 元できる。器高8.5㎝、口径22㎝を呈する浅鉢である。現 状は4つに分かれているが、同一個体と考えられる。胎土 中には径1㎜未満の石英や長石、角閃石がわずかに含まれる。 色調は主に茶褐色から明黄褐色で、焼成は良好である。4単 位の文様で構成され、口縁部に2箇所の突帯が付されてい たと考えられるが、うち1個しか残存していない。文様は 連携コ字状文であり、縄文のない部分と縄文のある部分は 交互になる。単節RL縄文が施された後に線刻され、区画内 の縄文が磨り消される。連携コ字状文の内側には舌弧文が 施される。器面は、沈線によって区画された部分ごとにミ ガキの方向を変えており、横長の部分には横方向に、縦長 の部分には縦方向にミガキが施される。内面は横ナデの後、 横ミガキがなされる。(青木)

(3) 石器 (図 9-3 ~ 7)

図 9-3 は長さ 135.3mm、幅 39.1mm、厚さ 37.3mm、重 さ 321.80g、断面三角形の棒状礫であり、下半が折れている。 明確な擦痕や敲打痕は認められない。細粒砂岩。

図 9-4 は長さ 98.1mm、幅 49.7mm、厚さ 33.3mm、重さ 219.29g の繭状の自然礫。明確な擦痕や敲打痕は認められない。溶結凝灰岩。

図 9-5 は長さ 137.2mm、幅 39.5mm、厚さ 23.4mm、重 さ 169.13g の棒状の自然礫である。明確な擦痕や敲打痕は ないが、表面は広く摩滅を帯び、光沢が見られる。細粒砂岩。

図 9-6 は長さ 195mm、幅 47.6mm、厚さ 31.2mm、重さ 447.76g である。棒状の自然石の正面に 2 ヶ所、裏面に 1 ヶ 所の窪みがあり、細身であるため、通常の凹石とは異なる。 3 ヶ所を対象物にぶつけるような動きで、つまり叩き石と同 様な保持法で使用されたと考えられる。通常の叩き石より も、窪みの剥離が大きく、窪みから剥離痕が生じている部 分もある。したがって、岩石のような硬い物体を叩くのに 使われたと推定される。以下に記すように、喜田氏(1934a) が述べる亀頭形を刻したものであるかもしれない。細粒砂 岩製。

図 9-7 は長さ 121.4mm、幅 25.6mm、厚さ 24.9mm、重 さ 101.75g の不整形な棒状礫である。加工痕が認められな い。細粒砂岩。

以上、棒状の礫および礫石器、合わせて5点がある。こ れらが喜田氏(1934a)が記した陽石や金精様と予想され、 東北大学に持ち込まれた浅鉢が図1のAであれば、それに 隣接する図1の金精様に該当する資料を含んでいる可能性 がある。喜田氏の記載には、「自然石及び之に加工した陽石」 とあり、その構成は一致する。また、「今も現に同縣上北郡 野邊地町字石神なる道祖神に供へてあるものと同様なもの」 とあり、決してご本尊となる大型石棒ではなく、小型のも の(供え物)であることを推測させる。そして、「明らかに 亀頭形を刻したもの」の「其の一個は両端に亀頭を刻して ゐる」と書かれており、図 9-6 を示す可能性が高い。さらに、 「長さ三四寸から五六寸に達する」とあり、図 9-3 ~ 7 のサ イズと一致する。スケッチには「金精様は大小合わせて 3 ヶ」 と注記があるが(葛西 2002、2006b)、収蔵資料は 5 点である。 小型の 2 点は金精様には数えられなかったのかもしれない。 (鹿又)

4.3Dデータとオルソ画像の作成

使用機材は、OM デジタルソリューションズ社製のコン パクトデジタルカメラ、「Tough TG-6」を用いた。当カメラ は一眼レフのカメラと比べて小型軽量であり、様々なアン グルからの撮影が必要な縄文土器の立体的な装飾や、なる べく短時間で大量の写真を撮影する際に適しているといえ る。今回は、撮影モードを「顕微鏡モード」として、土器 棺の内外面、及び底部をなるべく近接した距離かつ写真同 士のオーバーラップを取って計 1106 枚撮影した。

3 Dデータの作成は、Agisoft 社製の「Metashape 2.0.3」 を用いた。当ソフトは、撮影した遺構・遺物写真を三次元化 する作業において広く普及しており、オルソ画像の作成や3 Dデータの活用において既に有効なツールとなっている。

3 Dデータとオルソ画像の作成に際しては、横山真、千葉史(株式会社ラング)両氏の協力を得た。作成は次の手続きで行った。①写真のアライメント「精度:高」→②ポイントクラウド構築(品質:最高)→③メッシュ構築(ポリゴン数:高)→④テクスチャー構築(テクスチャーサイズ16384×1)によって得られたデータであり、これを基にしてオルソ画像を抽出している。

オルソ画像は、土器棺の頸部に付されている橋状把手の 位置を中心軸として、側面図計5点、上面、底面各1点の ほか、全体の文様構成が把握できるように円筒展開図を作 成した(図10・11)。

表現方法は、通常のテクスチャーよりも画像が鮮明な PEAKITを採用した(横山・千葉 2017、横山 2018)。これに より、胴部文様や底部圧痕の詳細は、2次元上においても より明瞭に把握することができる(角度を表示した図のみ、 テクスチャーを使用)。

文様構成や表現手法については第3項で既に述べられて いるが、土器を多面的に可視化した際に認識された製作上 の特徴を追記として述べておきたい。

当資料は、上面図で確認されるように、頸部に5単位の 橋状把手が付されている。頸部以下に付されている隆帯区 画文はこの把手を基点として施されていることから、土器 製作上においては把手を付加した後に胴部文様が施文され たとみられる。付されている把手間の角度を計測すると、 把手aを0°とした場合、把手bとの間がちょうど70°、把 手b-把手c間が同じく70°、把手c-把手d間が65°、把

図 8 山野峠遺跡出土浅鉢

手d - 把手e間が 70°、把手e - 把手a間が 85°となる。a からd間までが正確に 70°で誤差も5°程度であるのに対し、 eからa間のみが 85°と角度がずれており、円筒展開図か らも間隔の広さが確認される。おそらくは、 $a \rightarrow b \rightarrow c \rightarrow$ $d \rightarrow e$ 、あるいはその逆の $e \rightarrow d \rightarrow c \rightarrow b \rightarrow a$ の順に把手が 装飾され、はじめはほぼ等間隔に付加することができたが、 最後の把手を付加した段階で結果的に 70°の間隔から逸脱 したものと推測される。

縄文土器の施文過程については、あらかじめ幾つかに分割 してから施文する「分割型割付法」と、そうでなく場当たり 的に施文を開始する「集積型割付法」の主に2パターンがあ るとされる(鈴木 1968)。当土器棺は、橋状把手のような、 俯瞰しながら均等に割り付けることが可能な装飾であるにも かかわらず、一部の間隔のみが異角度であることから、均等 に把手を配置することを意識しつつも「集積型割付法」によっ て製作された可能性がある。縄文後期以降、口縁部文様の単 位数が5単位以上に増加することが指摘されている(中村 2008)が、こうした事例も同様の手法によって造形、施文 されているように思われる。桜井準也氏は、俯瞰しながら製 作することが可能な縄文晩期大洞式の小型壺形土器でさえ、 「集積型割付法」によって文様が施文される例が多いことを 指摘しており(桜井 2006)、少なくとも縄文時代後晩期にお いては通有の施文手法といえよう。(永瀬)

5. 土器棺の赤彩状況

図12 ①は、肉眼での赤色顔料の範囲を示した観察図で、 赤い部分は明らかに赤色顔料とわかる範囲、ピンクの部分 は赤色顔料の痕跡として観察される範囲である。外面では、 濃い赤色顔料の範囲が橋状把手付近や方形区画文(図122) 等に観察されるが、赤色顔料が薄い範囲や器面に生じた微 細なクラックに顔料が残存する範囲(図123)により、口 縁部〜胴下部(最張部)の横位の隆帯付近(図124)まで 全体的に赤色顔料が塗布されていることがわかる。内面で は、口縁部の一部で器面ピットに赤色顔料が残存する範囲 (図125)が観察されることから、当時は口縁部を赤彩し ていたものと思われる。赤色顔料の色調は、『標準土色帖』 の赤色(7.5 R4/8)に近い。

山野峠遺跡出土の現存する土器棺は6点あり、『再葬土器 棺墓の研究』(葛西2002)で示されたNa1が当該土器棺で、 Na2~6が青森市教育委員会所蔵となっている。これらのう ち、赤彩された土器棺は、Na1・2・5・6の4点で、いずれ も土器の焼成後に赤色顔料を塗布したものである。(児玉)

6. 人骨

複数個体分の人骨を認めたものの、完形の骨は少数の手 足の骨のみで、頭骨や四肢長骨は断片的であり、形態学的 検討に基づく個体識別は困難であった。それゆえ、肉眼観察によりペアリングを試みた同一部位の左右の骨を除き、 各人骨の帰属個体の追求は保留し、部位同定、残存状態の 確認、年齢推定、性別判定、計測、傷病変の有無を検討し、 人類学的所見を得るにとどめた。計測はマルチンの方法(馬場 1991)に従った。

以下、部位別に各人骨の所見を記載する。人骨の名称は 『解剖学用語』(解剖学用語編集委員会 2007) に準拠し、同 一部位の骨が複数存在する場合は、骨名の後に小文字アル ファベットを付して区別した(例:右大腿骨 a、右大腿骨 b)。 部位を同定できた人骨を図 13 に示した(肋骨を除く)。幼 児ないし小児と推定した前頭骨 1 点を除き、全て成人段階 の骨である。傷病変については、特に認めた場合のみ記載 した。

(1) 頭骨

前頭骨(図 13-1):前頭骨の断片。厚さが 2 ~ 3mm と薄 く、幼児ないし小児と推定した。

頭頂骨(図 13-2):左右不明の小片で、左右は不明。厚さは7~8mmで、成人と思われた。

下顎骨(図13-3a・3b):左側の大臼歯部から下顎枝の下 半にかけて残存する。第1・第2大臼歯が植立し、第3大 臼歯は歯槽の底部に死後破損した歯根の断端が残るのみで ある。第3大臼歯の歯根形成が完了しており、成人である ことは間違いない。歯の咬耗度について、第1大臼歯では 象牙質が点状に露出していることから Molnar の3度、第2 大臼歯では咬耗がエナメル質のみにとどまっていることか ら Molnar の2度に比定された。縄文時代の成人としては咬 耗が軽度であり、壮年段階と思われた。下顎角周辺の筋付 着部の発達が弱く、女性的である。齲蝕や歯周炎は見当た らない。第1大臼歯に2条、第2大臼歯に1条のエナメル 質減形成を認めた。

(2) 体幹の骨

環椎(図13-4):両側の外側塊と前弓、および後弓の左半 が残存する。赤彩あり。

軸椎(図 13-5):椎体と右の関節部、および椎弓が残存する。 胸椎の椎弓(図 13-6):順位不明胸椎の椎弓片と右の横突 起である。

胸椎a(図13-7):中位胸椎の椎体。

胸椎 b (図 13-8):下位の胸椎で、椎体の左側の一部を破 損するが、概ね全体が残存する。

腰椎 a (図 13-9):ほぼ完形。加齢性の骨棘はみられない。 赤彩あり。

腰椎 b (図 13-10): 椎体のみが残存する。加齢性の骨棘 はみられない。赤彩あり。

肋骨:右第1肋骨1点を含む右肋骨片6点、左肋骨片5点、 左右不明の肋骨片14点を認めた。左肋骨1点と左右不明肋

図 10 山野峠遺跡出土の土器棺の 3D データオルソ画像

図 11 山野峠遺跡出土の土器棺の 3D データオルソ画像と展開図

④ 胴下部の隆帯付近に観察される赤色顔料図 12 山野峠遺跡出土土器棺の赤彩状況

② 方形区画文内外に観察される赤色顔料

③ 器面クラックに残存する赤色顔料

⑤ 口縁部内面の器面ピットに 残存する赤色顔料

骨片2点に赤彩あり。

(3) 上肢の骨

右鎖骨a(図13-11):肩峰端の断片。赤彩あり。

右鎖骨b(図13-12):両骨端を欠く骨幹部が残存する。 赤彩あり。右鎖骨bと残存部位が重複せず、骨体の大きさ が類似することから、両者は同一の骨の可能性がある。

左鎖骨(図13-13):骨幹部から肩峰端にかけて残存する。 右肩甲骨(図13-14):外側縁の断片。

左肩甲骨(図13-15): 烏口突起の断片。

右上腕骨 a (図 13-21):骨幹部から遠位端にかけて残存 する。三角筋粗面がやや発達する。肘頭窩に滑車上孔は開 存しない。骨体最小周(マルチン番号7)は61mm。赤彩あり。

右上腕骨 b (図 13-22):骨幹部のみが残存する。三角筋 粗面がやや発達する。

右上腕骨 c (図 13-23):骨幹遠位部の断片。右上腕骨 a は残存部位が重複するので別個体。右上腕骨 b とは残存部 位が重複せず、骨体の大きさが類似することから、同一の 骨の可能性がある。

左上腕骨(図 13-24):近位端から骨幹部にかけて残存する。 三角筋粗面がやや発達する。右上腕骨 a・b と対称的な形 状であり、いずれかと同一個体であっても不自然ではない。 骨体の保存状態は、どちらかといえば b に類似する。赤彩 あり。

右橈骨(図13-25):近位端から骨幹部にかけて残存する。 やや華奢な印象を受ける。骨体最小周(マルチン番号3)は 41mm。

左橈骨(図13-26):近位端から橈骨粗面にかけて残存する。 右橈骨に比べてやや頑丈であり、両者は別個体に帰属する ものと思われた。

右尺骨(図13-27):骨幹中央部が残存する。

左尺骨(図13-28): 鈎状突起から骨幹中央部にかけて残 存する。赤彩あり。

左有頭骨(図13-16): 完形。手根骨で確認できたのはこの1点のみである。

左第5中手骨(図13-17):完形。

手の基節骨 a・b・c (図 13-18・19・20): 基節骨 a は近 位端を欠損、b と c はほぼ完形である。

(4) 下肢の骨

右寛骨(坐骨)(図13-29):坐骨の断片。

左寛骨(腸骨)(図13-30):腸骨体および腸骨翼から寛骨 臼の上半にかけて残存する。Y字軟骨が消失して寛骨臼の形 成は完了している。耳状面の保存状態は不良で、耳状面の 形状の評価に基づく年齢推定は困難であった。大坐骨切痕 と耳状面前溝が破損しており、性別は判定できない。

右大腿骨 a (図 13-41):小転子を含む骨幹近位部。粗線 部が発達して後方に突出し、柱状大腿骨の様相を呈する。 右大腿骨 b (図 13-42):小転子を含む骨幹近位部から中 央部にかけて残存する。保存状態は不良で、骨表面の様相 は不明瞭。

左大腿骨 a (図 13-43):両骨端を欠く骨幹部。粗線部が 発達して後方に突出し、柱状大腿骨の様相を呈する。骨体 中央矢状径(マルチン番号 6)は 30mm、骨体中央横径(7) は 26mm、骨体中央周(8)は 88mm、骨体中央断面示数(6/7) は 115.4。右大腿骨 a と対称的な形状で、保存状態も類似し ていることから、両者は同一個体に帰属するものと思われ た。

左大腿骨 b (図 13-44):骨幹近位部から中央部にわたる 断片で、保存状態は不良。右大腿骨 b と対称的な形状で、 保存状態も類似していることから、両者は同一個体に帰属 するものと思われた。

右脛骨 a (図 13-45):両骨端を欠く骨幹部。骨体最小周(マ ルチン番号 10b) は 73mm。骨表面に軽度の骨膜炎と思わ れる縦状線紋が認められた。

右脛骨 b (図 13-46):骨幹近位部から中央部にかけて残 存する。保存状態は不良。骨表面に軽度の骨膜炎と思われ る縦状線紋が認められた。

左脛骨 a (図 13-47):外側顆から骨幹中央部にかけて残 存する。骨体は頑丈であり、男性的である。骨表面に軽度 の骨膜炎と思われる縦状線紋が認められた。

左脛骨 b (図 13-48):遠位部の断片。左脛骨 a と残存部 位が重複せず、骨体の大きさが類似することから、両者は 同一の骨の可能性がある。

右腓骨(図13-49):骨幹近位部から中央部にかけて残存 する。骨幹部の内・外側面に骨体長軸方向に伸びる凹みが あり、樋状腓骨の様相を呈する。

左腓骨(図13-50):骨幹中央部から遠位部にかけて残存 する。右腓骨と同じく樋状腓骨である。

右距骨・右踵骨・右中間楔状骨・左舟状骨・左内側楔状骨(図 13-31・32・33・34・35):いずれの足根骨も完形である。右距骨に内果面の前方延長(蹲踞面)が認められた。

右第4・第3中足骨(図13-36・37):いずれも遠位端を 欠損する。解剖学的に自然に関節することから、両者は同 一個体に帰属するものと思われた。

右第3中足骨(図13-38):近位端を含む断片。 左第4中足骨(図13-39):完形。 足の基節骨(図13-40):完形。赤彩あり。

(5) 小結

部位を同定し得た人骨は上述の75点で、その他に部位不明の小片が十数点確認された。最小個体数は小児1、成人2の計3体であるが、各人骨の個体識別は困難であり、人骨群が3体以上からなる可能性は否定できない。断片的な人骨が多いが、柱状大腿骨や樋状腓骨、蹲踞面を有する距骨など、縄文時代人骨に多く現れる形態学的特徴(cf.山口

1982)が散見された。また、12点の人骨に赤色顔料の付着 を認めた。なお、骨表面には齧歯類の齧痕が全くみられな かった。これは、白骨化した遺体が動物の侵襲を受けにく い環境にあった(例えば、土中に埋められた状態にあった) ことを示唆する傍証といえるかもしれない(澤田ほか 2013 ・2014)。 (澤田・佐伯)

7. 出土遺物の編年的評価

山野峠遺跡の土器棺は、1933年に喜田貞吉氏らが峠道の 東側斜面を調査した際に、6基の石室内から併せて12個体 が出土したとされる(江坂1967a、葛西1975)。このうち、 所在が確認できるものは当資料1個体(図6、7)のほかに、 青森市教育委員会が1970年の再調査時に喜田氏が調査し たとみられる石室の近辺で回収した4個体がある。加えて、 江坂輝彌氏が1967年に調査した西側斜面の石棺墓群南西端 の列外で発見された破片(江坂1967a)と1970年の調査で 青森市教育委員会により回収された破片(葛西1975)を接 合した狩猟文を有する土器棺1個体が同教育委員会に保管 されている。なお、慶応義塾大学には山野峠遺跡出土とさ れる後期前葉十腰内I式の壺形土器が1個体保管されてい るが、1967年の調査で江坂氏が持ち帰った土器棺は上記の 狩猟文土器であることから、出土地点については明確では ない。

葛西氏は、当資料を含む現存する6個体の土器棺を、当 初、文様構成によってa類(文様が隆起帯によって構成さ れるもの)、b類(文様が沈線文によって構成されるもの)、 c類(磨消縄文手法の見られるもの)の3類に分類し、a 類は山野峠遺跡出土のもので最も古い土器棺、b類は青森 県内では最も多いタイプ(「堀合式甕棺」)でa類に後続す るもの、 c 類は十腰内第1群の後半期大湯式土器に伴出す るもの、としてそれぞれに時間的な差異があると指摘した (葛西 1975)。本資料は、連結沈線文による渦巻文や方形文、 コ字状文の主要文様が大柄に描かれる特徴からこの内のり 類に分類されている。その後、葛西氏は『再葬土器棺墓の 研究』を著して、青森県内をはじめ、北東北から北海道の 土器棺出土事例を集成し、先のa類を後期初頭の「牛ヶ沢 (3) 式期」、c類を後期初頭の「蛍沢||期|に位置づけて いる(葛西 2002)。 b 類は図化されなかったためか、時間 的な位置づけが不明であるが、葛西氏が提示した土器棺の 編年案では、 c 類と同じく「蛍沢Ⅱ期」が特徴的にもっと も近いようである(葛西 2002)。浅鉢(図8、9-1、2)も 同様に、主要文様がコ字状文であり、それが大柄に描かれ ることから「蛍沢 || 期」に近いといえる。

北東北における縄文時代中期末葉から後期前葉にかけて の土器編年研究は、地域差や系統差に対する捉え方の違い から様々な見解が提起されている(千葉・高山 2018)(表1)。 表1に示したように、「蛍沢 | 期」、「蛍沢 || 期」(葛西 2002・2005)、「沖附(2)式」、「弥栄平式」(成田 2002)として細分化されていた後期初頭の時期は、『青森県史』の編年では「2期(後期初頭新段階)」(児玉 2013)、『総覧縄文 土器』の編年では「十腰内第 || 様式」(榎本 2008)、成田編 年(1981)、本間編年(1987・1988)では「蛍沢式」とし て一つの段階に包括されている。

以上のことを踏まえると、当土器棺と浅鉢は、現時点に おいては青森県史編年の「2期」(児玉 2013)、総覧縄文土 器編年の「十腰内第 II 様式」(榎本 2008)、あるいは「蛍沢式」 (成田 1981、本間 1987・1988) に位置づけられるが、当該 期の土器編年については、従来からの課題である地域差や 系統差のほか、遺跡差などの微視的な視点も視野に今後も 検討を続けていく必要があるだろう。(永瀬・青木)

8. まとめ

本研究によって未報告であった東北大学所蔵の山野峠遺跡出土品とその記録について公開することができた。資料 に関する分析や考察は、喜田貞吉氏が発掘した約90年前と は格段の進歩があり、現代的評価を行うことができた。特 に当時の発見状況と現存する資料の状況の対応関係を示す ことができた点は本論の主たる成果である。

具体的な成果として、①喜田氏が持ち帰った各種の資料 を提示できた。②土器棺は発見時の破片を一部欠いており、 発見時はより完形に近かった。③浅鉢はスケッチ(図1)に 示された A の土器の可能性が高い。④土器棺は集積型割付 法によって施文され、施文手順を復元できる。⑤土器棺に は赤彩が塗布されたが、体部下半には塗布されなかった。 ⑥土器棺に含まれていたと推定される人骨は最小個体数で 小児1(前頭骨1点のみ)、成人2の計3体である。⑦人骨 には齧痕が全く見られず、白骨化時に遺体が動物の侵襲を 受けにくい環境にあったことを示す。⑧人骨の幾つかには 部分的な赤彩が確認され、再葬にあたっての赤色顔料の塗 布が予想される。⑨石棒は自然石を未加工で利用したもの が多く、既報の特徴と一致する。

一方で、その歳月のために正確な情報を把握できず、資料の評価に問題を与えている点もある。特に土器棺と人骨の関係をどのように評価すべきかには大きな課題がある。詳細な検討は本論で行う紙数は残されていないものの、例えば、青森県内の同時期の土器棺の事例を見ると、成人骨1 体が納められることが一般的である。本例では複数個体が 一つの土器棺に納められた可能性を残しているが、ここで は5つの可能性を具体的に示し、今後の議論の方向性を示 したい。

- ・
 ・
 ヨ田氏が山野峠遺跡の他の土器棺の人骨も一緒に持ち帰った。それらの資料が保管中に混在して一つの棚に収められてしまった。
- ② この人骨は、収蔵庫の中の展示棚の引き出し

時期	本間(1987・1988)	児玉(2003)	児玉(2013)	成田(1981)	成田(2002)	榎本(2008)	葛西(2005)	
後期初頭	上村式	小牧野浩跡1期	1期(加商士印啡)	笠田群	ᄮᇨᇃᇰᅷ	土晒肉笠⊤样式	生 ヶ沢(2)ず	
	韮窪式	小权封退助「刑	1朔(初頭口段陷)	第 世研	十ケバる氏	十胺闪第1	十9 (13)式	
		小栫町浩弥の期		蛍沢式	沖附(2)式	上届日级日本书	蛍沢I期	
	蛍沢式	小权玎退郧2册	2期(初頭新段階)		弥栄平式	〒胺内第Ⅱ陳式	蛍沢Ⅱ期	
		小牧野遺跡3期		前十腰内 I 式	前十腰内I式	十腰内第Ⅲ様式	小牧野3期	
後期前葉	十腰内I式	小牧野遺跡4期	3期(十腰内 I a段階)	十腰内 I a式	十腰内 I A式	十腰内第Ⅳ様式	十腰内 I 式(古)	
	大湯式	小牧野遺跡5期	3期(十腰内 I b段階)	十腰内 I b式	十腰内 I B式	十腰内第Ⅴ様式	十腰内 I 式(中)	
	十腰内Ⅱ式		3期(四ツ石式)	十腰内Ⅱ式	十腰内Ⅱ式	十腰内第Ⅵ様式	十腰内 I 式(新)	

表1北東北における縄文時代後期初頭~前葉の土器編年対照表(千葉・高山2018より抜粋)

(No.1894) に保管され、「久栗坂」のラベルと一緒に 保管されていた。ただし、その引き出しには「北貝 塚」の記載があり、この貝塚の人骨が混入した可能 性を考慮する必要がある。北貝塚はサハリンの伊東 信雄氏の調査資料であるが、この人骨には移送の際 に使われた籾殻が数多く付着していた。サハリンで はコメの栽培がないため、この人骨がサハリンから 持ち運ばれたものとは考えにくい。また、赤色顔料 が付着しており、骨化のあと再葬の際に土器棺と同 様に顔料が塗布されたと予想される。これらの状況 はサハリンの北貝塚の状況には合致しない。そのた め、この混入の可能性は低く、山野峠の人骨と判断し、 今回報告に至った。

- ③ 山野峠の一つの石棺に入っていたものであるが、一つの土器棺に納められていたものではない。写真(図5)にある通り、土器棺内の土壌は土器を取り外して回収されている。したがって、こぼれた土壌が石棺内の土壌と混在した可能性は十分に考えられる。そのため、土器棺内にあった1体分の人骨が、石棺内の他の人骨と混在し、3体分が回収された。この場合、石棺が一次葬の場と推定される。
- ④ もともと一つの土器棺に3個体の人骨が意識的に納められた。この場合、「土器棺合葬墓」となる。葛西氏の報告(1975)では、「喜田博士が持ち帰られた甕棺には2人分の人骨が納入されていた事実」とある。この「事実」とした根拠が喜田氏のいずれの報告に依拠したものかは明らかでないが、あるいは1969年まで存命した長谷部言人氏より教示を受けていた可能性がある。
- ⑤ もともとの土器棺に3個体分の人骨が意図せずに納められた。石棺墓もしくは、土坑墓を一次葬とし、そこに含まれる骨化した人骨を土器棺に移す際に混入した。

本論は学史的な資料の再評価であるため、幾つかの問題 点を残している。しかし、新たな事実を報告することによっ て、縄文時代後期土器棺墓を巡る研究の発展に僅かでも寄 与できればと願うばかりである。(鹿又、永瀬、児玉、澤田)

註

註1:江坂(1967a)で図示されていたスケッチでは、6基 の石室から検出された土器に人骨が含まれていたこ とを示す斜線のトーンが掛けられている。この場合、 全石室より人骨がみつかっていることとなり、人骨 入り土器は「6個」となる。しかし、葛西(1975) で図示された同一のスケッチでは、北東隅の石室か ら検出された土器のトーンが外され、「人骨が納入さ れていた個体は5個」と言及されている。本稿では、 スケッチに対してより詳細な説明が加えられている 葛西(1975)の図を採用した。

謝辞

本論の資料調査にあたり、下記の諸氏に御教示、御協力を賜った。

安藤広道(慶應義塾大学)、横山 真、千葉 史(株式会 社ラング)、菅野智則、柴田恵子、白石浩子(東北大学埋蔵 文化財調査室)、斉藤慶吏(三内丸山遺跡センター)、品川 欣也(東京国立博物館)、佐藤智生(青森県埋蔵文化財調査 センター)、野澤 望(小牧野遺跡保存活用協議会)

参考文献

青森市教育委員会 1983 『山野峠遺跡』

- 江坂輝彌 1967a「青森県久栗坂 山野峠遺跡」『考古学 ジャーナル』13 pp.12-13 ニューサイエンス社
- 江坂輝彌 1967b『日本文化の起源:縄文時代に農耕は発生 した』講談社現代新書 108、講談社
- 江坂輝彌 1968「縄文土器文化後期における改葬甕棺墓の 研究」『北奥古代文化』創刊号 pp.3-7 北奥古代文化 研究会

- 榎本剛治 2008「十腰内 | 式土器」『総覧縄文土器』 pp.530-535 アム・プロモーション
- 解剖学用語委員会(編) 2007『解剖学用語,改訂 13 版』 医学書院
- 葛西 勵 1975「青森県山野峠石器時代墳墓遺跡について」 『北海道考古学』第11 輯 pp.27-39 北海道考古学会
- 葛西 勵 2002『再葬土器棺墓の研究-縄文時代の洗骨葬 -』再葬土器館墓の研究刊行会
- 葛西 勵 2005「十腰内Ⅰ式土器の研究」『研究紀要』№.8 pp.11-28 青森大学考古学研究所
- 葛西 園 2006a「山野峠遺跡の調査」『新青森市史 資料 編1 考古』pp.26-29 青森市
- 葛西 勵 2006b「第 66 節 山野峠遺跡」『新青森市史 資料編 1 考古』pp.482-489 青森市
- 葛西 勵 2006c『続・再葬土器棺墓の研究』再葬土器棺墓 の研究刊行会
- 葛西 勵 2013「第Ⅱ部遺跡編 第Ⅰ章縄文時代後期 1 山野峠遺跡」『青森県史資料編考古 2』pp.62-65 青森 県
- 鹿又喜隆 2022「赤煉瓦書庫に残る法文学部の研究と教 育の記憶」『学都仙台の近代高等教育機関とその建築』 pp.96-102 東北大学出版会
- 鹿又喜隆・菅野智則・加藤 諭・曽根原理 2023「東北考 古学の礎-東北大学奥羽史料調査部から現在へ-」『東 北大学史料館研究報告』第18号 pp.87-103
- 喜田貞吉 1934a「青森県出土洗骨入土器」『歴史地理』 63-6 pp.84-88 日本歴史地理研究會
- 喜田貞吉 1934b「奥羽地方石器時代實年代の下限-宋銭発 掘の確實なる亀岡式土器遺蹟調査報告-」『歴史地理』 63-1 pp.1-14 日本歴史地理研究會
- 児玉大成 2003「小牧野遺跡における縄文後期前半の土器 編年について」『小牧野遺跡発掘調査報告書Ⅶ』pp.147-166 青森市教育委員会
- 児玉大成・蝦名 純 2003『小牧野遺跡発掘調査報告書Ⅷ』 青森市埋蔵文化財調査報告書第 70 集 青森市教育委員 会
- 児玉大成 2013「第 | 部時代概説 2 土器の編年 第 1 節 縄文後期」『青森県史 資料編 考古 2 縄文後・晩期』 pp.8-16 青森県
- 桜井準也 1998「縄文土器製作における文様区画と施文過 程-縄文人の認知構造の解明にむけて-」『東邦考古』

22 号 pp.31-46 東邦考古学研究会

- 桜井準也 2006「土器の文様区画と認知構造」『心と体の考 古学』pp.133-160 同成社
- 澤田純明・千代田高明・嵯峨将央・羽富悠太・星野敬吾・ 長岡朋人・平田和明 2013「西谷古墳出土人骨について」 『富津市西谷古墳』pp.33-40 公益財団法人千葉県教 育振興財団文化財センター
- 澤田純明・佐伯史子・鈴木敏彦・篠田謙一 2014「大膳野 南貝塚出土人骨の形態学的報告」『大膳野南貝塚 第Ⅲ 分冊 - 本文編 3-』pp. 841–907 公益財団法人千葉市教 育振興財団
- 鈴木公雄 1968「安行式土器における文様単位と割りつ け」『日本考古学協会昭和 43 年度大会研究発表要旨』 pp.5-6
- 千葉 毅・高山理美 2014「東北地方北部における縄文時 代後期初頭から前葉土器編年研究の現状と課題-青森 県安部遺跡出土土器の理解のために-」『縄文時代』第 25号 pp.91-115 縄文時代文化研究会
- 中村 大 2008「文様単位数とその意味」『総覧縄文土器』 pp.1162-1167 アム・プロモーション
- 成田滋彦 1981「青森県の土器」『縄文文化の研究』4 pp.123-132 雄山閣
- 成田滋彦 1989「入江・十腰内式土器様式」『縄文土器大観』 4 pp.277-280 小学館
- 成田滋彦 2002「第4章まとめ 第1節遺物に関するまと め (1)第Ⅳ群土器(縄文時代後期)」『三内丸山(6)遺 跡Ⅳ』pp.375-386 青森県教育委員会
- 馬場悠男 1991『人体計測法』人骨計測法』雄山閣
- 本間 宏 1987「縄文時代後期初頭土器群の研究(1)」『よ ねしろ考古』第3号 pp.31-50 よねしろ考古学研究 会
- 本間 宏 1988「縄文時代後期初頭土器群の研究(2)」『よ ねしろ考古』第4号 pp.71-84 よねしろ考古学研究 会
- 山口 敏 1982「縄文人骨―縄文人骨の特徴」『縄文文化の 研究1縄文人とその環境』pp.27-54 雄山閣
- 横山 真・千葉 史 2017「PEAKIT による考古遺物の視覚 表現」『季刊考古学』第 140 号 pp.30-33 雄山閣
- 横山 真 2018「三次元技術を考古資料の記録に用いるこ との意義」『国史学』第 226 号 pp.77-97 国史学会

福岡県湯の隈古墳石室の SfM 法による高精細 3 次元計測 High-resolution 3-D measurement of stone chanber of Yunokuma Tumulus in Fukuoka Prefecture using SfM method

藤沢 敦 *・鹿納 晴尚 *・田尻 義了 **・志村 将直 ***

* 東北大学総合学術博物館 ** 九州大学比較社会文化研究院環境変動部門 *** 株式会社シン技術コンサル

Atsushi Fujisawa*, Harumasa Kano*, Yoshinori Tajiri** and Masanao Shimura***

*The Tohoku University Museum, **Department of Environmental Changes, Faculty of Social and Cultural Studies, Kyusyu University, ***SHIN ENGINEERING CONSULTANT CO. LTD.

Abstract: Yunokuma Tumulus is a round burial mound with a diameter of approximately 20 meters, located in Asakura City, Fukuoka Prefecture, and has a corridor-style stone chamber. Some of the walls of the stone chamber are painted with circles and other patterns in colors. The chamber is made of unworked natural stone piled together, so the surface of the walls is rough and uneven. It is estimated to have been built in the second half of the 6th century, based on the typological characteristics of the stone chamber. In order to obtain high-resolution 3-D measurements of the stone chamber of the Yunokuma Tumulus using the Structure from Motion (SfM) method, we developed a method of photography and illumination. By analyzing 2,187 photographs taken, we were able to create a point cloud data set of about 1 billion points.

1. はじめに

東日本大震災以降、熊本地震や相次ぐ水害では、古墳石 室や城郭石垣などの石材で構築された文化財の被害が続い ている。これらの石造文化財が被災した場合、3次元計測 データがあると、被害状況の把握、被災後の修復・復元の 際に、大きな威力を発揮する。しかし、遺跡の種類によっ て、必要となる精度や有効な測定方法などが異なり、標準 となるべき基準の検討は、いまだ充分とは言えない。装飾 のある古墳石室などの極めて詳細なデータが必要なものか ら、城郭石垣のように規模が大きくデータ精度をある程度 落とす必要があるものまで、様々な特質を有した石材で構 築された文化財を対象に、保全を目的とした3次元計測の 標準を確立することが必要である。

このような観点から、藤沢が研究代表者となり、2020 年度から文部科学省科学研究費助成事業(基盤研究(A)・ 2020-2024年度)「石材構築文化財の保全のための3次元デ ジタルアーカイブの標準化の研究」を実施してきている¹¹。 この科研費による研究の一環として、2022年度に計測を実 施した、福岡県朝倉市に所在する湯の隈古墳の横穴式石室 の計測成果を報告する。当該科研費での研究で、これ以前 に計測を行った遺跡もあり順序とは前後するが、報告の準 備が整ったものから、順次報告を行うこととしている²⁾。 なお本論は、1.3.6.を藤沢、2.を田尻、4.を鹿納・

藤沢、5.を志村・鹿納・藤沢が分担して執筆した。

2. 湯の隈古墳について

湯の隈古墳は、朝倉市宮野に所在する直径約20mの円墳 である。宮地嶽古墳がある宮地嶽丘陵の丘陵上の南西側に 位置し、標高は約60mにある(図1参照)。墳丘は周囲が 削られやや歪になっている。石室は複室構造の横穴式石室 で、彩色系の装飾古墳である(図2参照)。装飾は肉眼では 判別し難いが、写真をデジタル処理すると玄室奥壁には同 心円文や蕨手文、玄室右壁にも同心円文、玄門の左袖石に は同心円文や船形などが描かれているようである。石室構 造から6世紀後半頃の築造と考えられているが、発掘調査 を含め詳しい調査は行われておらず、その他の情報は不明 である。朝倉市の史跡に指定されている。

なお、この湯の隈古墳に関して以前は名称に混乱が生じ

ていたが、姫野健太郎編 2000『朝倉の古墳と埴輪』朝倉市 文化財調査報告書第9集において整理されている。また、 石室の実測図については、小林行雄編 1964『装飾古墳』54 頁に、森貞次郎が原図の実測図が公開されている。

3.調査の目的

本科研費での研究では、計測方法の検討を目的として、 各年度に数ヶ所の計測を実施している。計測対象遺跡の選 定は、計測方法の検討に合致することを基本としつつ、近

図2 湯の隈古墳石室実測図

年の自然災害によって被害を受けた遺跡や、今後の保全が 懸念される遺跡を優先するとともに、被災した自治体を支 援することも目的として、計測対象を選択してきた。

2017年(平成29年)7月5日から6日にかけて福岡県 と大分県を中心とする九州北部で発生した平成29年7月 九州北部豪雨の際に、朝倉市では市内の各所で被害があり、 文化財も多数が被災した。湯の隈古墳は被災しなかったが、 開口していることから装飾の風化の進行が憂慮されており、 今後の保全を考えるとできるだけ早く3次元計測を実施し、 詳細なデータを残しておく必要があると考えられた。

福岡県南部の筑後川流域は、彩色による装飾古墳が集中 する地域として著名であるが、左岸側がほとんどで、湯の隈 古墳のように右岸側に所在するものは少数である。この点 からも湯の隈古墳は重要と考えられるが、充分な調査が行われていない状態であった。

湯の隈古墳の石室は、自然石を使用したもので、考古学的な検討では、石室の石が組み合う間を、できるだけ深いところまで図化することが望まれる。また、彩色による装飾の色調の再現性も重要である。これらの点について、SfM法の有効性や、解析用の写真の撮影方法を検討することは、本研究の目的に適合すると考えられる。

3 次元計測には様々な方法があり、計測対象と必要とされる精度を踏まえ、計測方法を選定することが必要である。 例えば横穴墓では、壁面の保存が良好な場合、掘削工具の 痕跡などの微細な凹凸を記録することが必要になることか ら、高精細な 3D スキャナなどを用いることが効果的であ る。自然石かそれに近い石材を用いた横穴式石室の計測で は、石と石が組み合った隙間部分をできるだけ奥まで深く 記録することによって、石材の組み方に関する情報を得る ことができることから、狭小な隙間の計測ができるだけ可 能な手法を選択することが必要となる。

石材が組み合った隙間を計測するためには、計測機器か ら陰になる部分ができないようにする必要がある。そのた めには、計測機器の位置を、細かく移動させて計測するこ とが必要となる。どのような計測方法を利用する場合でも、 計測機器を三脚に据え付ける必要がある場合には、移動と 計測に必要な時間の関係で、現実的な方法とならない場合 が多い。手持ちで計測するハンディスキャナでは、細かく 計測位置を移動することが可能である。しかしハンディス キャナでは、機器の方向によっては、細い隙間を計測でき ない場合がほとんどである。隙間と同じ向きにスキャナを 向ける必要があるなど、計測可能な範囲に制約があり、隙 間をくまなく計測することは簡単ではない。

またハンディスキャナでは、機器の計測可能距離がさほ ど広くない場合が多く、40cm 程度が基準の距離となってい る場合が一般的である。そのため、天井が高い石室などでは、 計測が難しい場合もある。2022年6月に実施した、福島県 須賀川市の前田川大塚古墳の横穴式石室の計測では、計測 可能レンジが0.5~4mと広い、ハンドヘルド型3Dスキャ ナ F6 SMART (Mantis Vision・イスラエル)を試した(菊 地ほか編2023)。計測機器から距離がある場合でも計測が 可能であったが、機器からの距離が離れると、機器に取り 付けた照明の明るさが不足し、色情報が充分得られないな どの課題があった。石が組み合う細い隙間では、隙間と同 じ方向に機器を向ける必要があり、床面近くの壁面や、コー ナー付近では計測できない部分が生じることは、他のハン ディスキャナと同じであった。

これに対して、多数のデジタルカメラ画像を解析して3

1. 湯の隈古墳の現況

2. 評定点の計測作業

3. リングライトによる撮影状況

4. 4灯ライトによる撮影状況

図3 湯の隈古墳の現況と作業状況

次元化する SfM (Structure from Motion) 法であれば、カ メラの位置を細かく移動させることで、石の組み合う隙間 を、くまなく撮影することができる。手持ちで撮影が可能 な条件を整えることができれば、比較的短時間で、細かく 位置を移動しながら撮影が可能である。

この場合でも、石の組み合う隙間に照明の影ができてし まうと、その部分は暗くつぶれ、3次元化は難しくなる。細 い隙間の深いところまで、照明をまわしていくことが必要 である。湯の隈古墳の石室には彩色による装飾があること から、色調をできるだけ正確に記録することも求められる。 しかし、石室内という限られたスペースで、均質な照明で 撮影することは簡単ではない。照明の機材や方法を工夫す ることが不可欠となる。

このように、SfM 法での 3 次元計測は、横穴式石室の計 測で有効な方法と考えられるが、解析用の写真の撮影方法 には検討課題が多い。照明方法や、使用する機材を工夫 しつつ、SfM 法の有効性を検討することは、本研究の目的 に適合する。以上のような観点から、湯の隈古墳の石室を SfM 法で計測し、上記課題を検討することとした。

4. 調査の方法と経緯

調査に先立つ 2022 年 11 月 24 日に、藤沢と田尻が現地 を視察し、朝倉市教育委員会の担当者と、計測作業方法な どについて打合せを実施した。上記のように、石室の石が 組み合う間を、できるだけ深いところまで図化できること が望ましいこと、装飾の色調の再現性にも留意する必要が あることを踏まえ、SfM 法で計測することとし、東北大学 で計測用の写真撮影を行うこととした。標定用の基準点測 量の方法なども検討し、作業実施への見通しを得た。

計測作業は、2023年2月6日と7日の2日間で実施し た³⁾(図3)。その際、湯の隈古墳での計測作業に併行し て、同市入地に所在する狐塚古墳石室の線刻部分について も SfM 法での計測を試みた。また朝倉市での作業が終了し た7日午後には、うきは市教育委員会の要請を受けて、う きは市吉井町福益に所在する安富古墳石室の一部について、 SfM 法での計測を試みた。これらは、SfM 法で線刻などの 微細な凹凸をどれだけ再現できるかを検証する目的に行っ たものである。湯の隈古墳石室の計測とは、目的がやや異 なるため、別途検討し報告する予定である。また今回の計 測では、参加した研究分担者の杉井(熊本大学)によって iPad Pro を使用した 3 次元計測のテストも行った。2020 年 以降発売の iPad Pro は、搭載された LiDAR(light detection and ranging) センサーで、簡便に3次元計測を実施できる 機能が備えられており、同時に取得した画像データを合わ せて 3D データを作成できる。同じ機能は iPhone 12 Pro・ iPhone 13 Pro にも登載されている。これらを利用した計測 についても、別途検討して報告する予定である。

計測にあたっての標定点の測量と、公共座標に位置づけ るための測量用に、石室入り口外側の、石室中軸線上にほ ぼあたる位置に、木杭に測量釘を打った仮基準点を設置し た(点A)。玄室内には、杭を打つことを避けるため、標尺 台を置いて仮基準点とした(point19)。床面の正射投影画 像に、標尺台が見える。点Aを原点として、point19と結 んだラインを基準として、局地座標を組んで標定点を計測 することとした。点Aとpoint19にトータルステーション を設置し、石室内の特徴のある場所18ヶ所を標定点として、 トータルステーションで測量を行った。トータルステーショ ンは、ノンプリズム測距のものを使用し、レーザーポイン ターで計測場所を示した状態で、写真や動画を撮影し、標 定点の記録とした。

点 A と point19 を結んだラインのほぼ反対側に、以前に 使用された測量用のコンクリート釘の測量鋲があり、C4 と の記号が付けられていた。公共座標に位置づけるための測 量用に、この点 C4 を利用することとし、局地座標での位置 をトータルステーションで測量した。これらの測量作業は 田尻が担当し、九州大学の測量機材を用いて、同大学大学 院生の協力を得て実施した。

仮基準点とした点Aと点C4については、後日に公共座標 値の測量を委託することとし、地元の測量会社である有限 会社グローバルプランに委託した。計測作業中の7日に現 地で打合せを行い、後日に測量を行っていただいた。周囲 に存在する既知点を調査していただき、それを基準にした。 基準点の位置や測量成果は、図4のとおりである。

トータルステーションでの測量を終えた後に、デジタル カメラを用いて、SfM 法での解析に使用する写真の撮影を 行った。上記の目的に合致することを考慮して、以下のよ うな機材、作業方法で、撮影を実施した。

使用したカメラボディは、Canon EOS 6D Mark II で、レ ンズは EF24mm F2.8 IS USM、F 値は 8、ISO を 2000 で固定し、 シャッタースピードを石室内では、1/50 程度になるように 照明をつけて撮影した。このような撮影条件で、手持ちで、 細かく移動しながら撮影を行った。それによって、石の組 み合う隙間も、できるだけ深くまで撮影できるように企図 した。

影を作らないように撮影するために、今回はあらたにリ ングライトの使用を試みた。バッテリーで作動できる、LPL 社製のリングライト(VLR-F300XP)を使用した。リング形 ライトでは撮影が難しい場所や、リング形ライトだけでは 光量が不足することが懸念される場合には、4灯ライトを使 用した。従来は、鹿納が考案した、カメラの上と左右の3 方向に、LED ライトを取り付ける方法をとってきた。今回 はさらに下にも増設し、上下と左右の4方向に LED ライト を取り付けられる器具を、市販の器具を組み合わせて作成 した。照明からの距離が変わると、壁面の明るさも変わる ので、カメラと壁面との距離を一定に保つように撮影した。

図4 基準点の位置

石室内は、奥に進むと外光の影響はほぼなくなるが、入口付近では外光の影響を受ける。このように環境光の状況が変わるごとに、カラーチャート(x.rite 社 Color Checker CLASSIC)を撮影しておき、補正ができるようにした。

撮影した画像ファイルは jpeg 及び raw(CR2) 形式で保存した。キャノン社製現像ソフトである Digital Photo Professional 4を使い、raw ファイルをカラーチャートでホワイトバランスを調整した後、16bit tiffのファイル形式で出力したファイルを3D再構成に使用した。3D再構成に使用したソフトウエアは Agisoft Metashape Professional (Version 2.0.1)で、使用した写真は2187枚である。高品質で再構成した点群数はノイズ除去前でおよそ10億点、メッシュ作成用に中品質で再構成した点群数は、およそ2億点となった。

5.計測データの加工

東北大学総合学術博物館では、特定のソフトウエアに依存しない形で3次元データを保存するために、X・Y・Zの座標値とRGBデータによる、色付き点群データとして保存し利用する方法を採用している。一方、考古学的データとして、学術的検討に供する方法は、本報告を含めて、2次元の図面として調査報告を作成することが一般的である。そのため、3次元データをもとに、正射投影画像を作成する必要がある。3次元計測データから正射投影画像を作成する作業は、今回のように点群数が多い場合、かなりの手間と時間を要し、PCの能力も高いものが要求され、簡単な作業ではない。計測方法に留まらず、計測データの加工についても、その目的と効果、それに応じて使用するソフト、作業に必要な時間とPCの能力、外部委託する場合の経費など、検討すべき課題は多く存在する。

今回の計測では、局地座標で標定点を測量し、そのまま 解析を行い、3次元化を行った。基準点の公共座標の測量 は、これらの作業の後となったため、局地座標による数値を、 公共座標の数値に換算する必要がある。この公共座標値へ の換算と、報告用のオルソ画像作成を、2023年度事業と して、株式会社シン技術コンサルに委託した。以下に、作 業の手順を記す。これらの作業は、フリーソフトウエアの Blenderを使用して書き出しを行っている。ソフトで操作で きる容量の関係もあり、3次元データのメッシュの頂点数は 1000万点程度で作成している。

最初に標定点の取得が任意座標であったため、基準となる2点の杭を基に回転と移動を行った。

点 A (任意座標 0,0) (公共座標 44073.885,-25477.441) 点 C4 (任意座標 -16.557,-3.434) (公共座標 44064.950, -25491.794)

二つの杭の任意座標の角度(-101.717度)と公共座標の 角度(-148.097度)の差分(46.380度)を回転角度とし、 点 A を起点に各座標の回転、点 A の公共座標の値分移動を 行い、公共座標とした。

標高値ついては、起点となる点 A・点 C4 以外は、任意座 標の点 A の標高値が 0 mであるため、点 A の公共標高値で ある 66.405 mを各点の任意標高値にプラスして算出してい る。

報告用に、床面、天井面、両側面、奥壁面、後室見返し、 前室奥、前室見返し、入口の計9面の正射投影(オルソ) 画像を作成した⁴⁾。基準となる石室中軸線を設定し、SPA ラ インとした。点Aを起点に、SPA が図上の縦軸と平行に、 横断するラインである SPB ~ Eが横軸と平行になるように 46.146 度回転をかける。床面と天井面は標高 67.117 mのポ イントでカットして作成した。

SPA の両側面はセクションラインと片面を合わせた立方体に対して A-A' は交差でカット、A'-A は差分でカットして作成。SPB~Eも同様に 3 次元モデルをカットし、3 次元モデルのテクスチャ空間の大きさとカメラのサイズを合わせて正射投影でカラー画像と陰影画像の 2 パターンを撮影した。

正射投影画像作成の際に使用するソフトの都合上オブ ジェクトの原点を(0/0/0)付近にオフセットを行わなけれ ばならないため、オフセットの値は(44,080/-25,470/66)と して作業を行った。

本資料のオルソ画像はフリーソフトウエアの Blender を 使用して書き出しを行っている。撮影するカメラのサイズ とオブジェクトのテクスチャ空間のサイズを一致させるこ とで余白のない正射投影画像を書き出している。また、背 景部分を透過に設定することによりオブジェクトが写って いない箇所を透明にしている。

陰影画像も、Blenderを用いて書き出している。3 次元 データから 2 次元画像とする際に、凹凸を表現する方法は、 様々な方法がある。今回は、仲林篤史が遺物を対象に提案 した、Blenderを用いて陰影を強調する方法を試行した(仲 林 2023)。

作成した正射投影画像をアングルごとに Adobe 社の illustrator へ埋め込み配置し、床面、天井面には座標値を、 各種展開面は標高値の入力を行った。3 次元画像の場合、裏 側からの画像が見えてしまう場合がある。断面をカットし た場合、カットされた石材の輪郭の外側に、裏面からの画 像が見えることが多く、判りづらくなってしまう。そのため、 カットされた石材の輪郭をトレースし、その外側を白く塗 りつぶしたレイヤーを重ねることで、裏面を隠した。

上記のような作業を行って作成した正射投影画像を、図5 から図11に示す。全て縮尺50分の1にそろえている。い ずれも、カラー画像と陰影画像を並べて示した。

6. 計測成果について

湯の隈古墳石室の3次元計測では、SfM 法によって、石 材の組み合う隙間を、できるだけ深くまで計測することを 目的とした。そのために照明を工夫するとともに、彩色に よる装飾があることから、色調の再現性にも留意する必要 があった。これらの目的を果たすために、撮影方法や照明 機材を工夫し、計測を実施した。

図示した正射投影図を見ると判るように、石材が組み合 う隙間も、ほとんど欠落無く計測ができており、特に暗く なっている部分も、ほとんど見られない。解像度についても、 微細な凹凸の再現性については、なお検討の余地があると 思われるが、石材の形状については、ほぼ十分なものとなっ ていると考える。色調を厳密に再現することは容易ではな いが、比較的安定して記録できているように思われる。今 回の計測の目的は、おおむね達成できたのではないかと考 えている。

湯の隈古墳の石室は、複室構造で比較的規模の大きなものであるが、2000枚を超える写真を撮影して、解析を行った。これだけの量の写真を解析するためには、使用する PCの能力が問題となるため、どこの機関でも簡単に実施できるわけではないが古墳の横穴式石室は、SfM 法でかなりの高解像度で3次元計測の実施が可能であることを示せたものと考えている。

なお本報告では、色調を調整して彩色を強調する加工は 行っていないが、今回報告した正射投影画像でも、加工は 可能である。今後、現地で観察しながら、このような検討 を行うことで、彩色についても新たな知見が得られる可能 性があるものと考えられる。

※本論には、日本学術振興会(JSPS)科研費 20H00019「石 材構築文化財の保全のための3次元デジタルアーカイブの 標準化の研究」(基盤研究A・2020~2024年度・研究代表 者藤沢敦)による研究成果を含みます。

謝辞

今回の計測では、朝倉市教育委員会の姫野健太郎、中島 圭、倉元慎平の各氏には、多大なご協力をいただいた。ま た、九州大学大学院生の松尾樹志郎、日高風海斗の両氏には、 表定点の測量でご協力いただいた。基準点測量を担当して いただいた有限会社グローバルプラン、計測データの加工 を担当いただいた株式会社シン技術コンサルには、様々な 面倒な依頼にも関わらず丁寧な対応をしていただいた。こ こにあらためて感謝したい。 1)本科研費での研究については、WEBページを作成し、その概要を紹介しているので参照されたい。

http://webdb1.museum.tohoku.ac.jp/index.html

2)本科研費で計測した成果で、これまでに報告しているのは、次のとおりである。

・福島県双葉町清戸廹横穴:東北大学総長裁量経費を利用して 2016 年度に計測。光学式非接触ハイエンド 3D スキャナ である SmartSCAN-HE を使用。計測成果の整理等に本科研 費を利用。藤沢・鹿納・吉野・小池 2023。

・宮城県名取市経の塚古墳出土長持形石棺: 2020 年度株式 会社シン技術コンサルの協力で計測。藤沢・大橋 2023。

・福島県須賀川市前田川大塚古墳石室:2022 年度計測の成 果を菊地ほか 2023 で報告。2023 年度に SfM 法で再計測。 3) 今回の計測作業に参加したのは、以下のとおりである。

東北大学:藤沢敦・鹿納晴尚(総合学術博物館)、九州大学: 田尻義了(比較社会文化研究院)、松尾樹志郎・日高風海斗 (九州大学大学院地球社会統合科学府大学院生)、熊本大学: 杉井健(大学院人文社会科学研究部)。

4) 横穴式石室などでは、奥から玄門側を見て、左右を示す ことが一般的である。一方、入口側から奥壁側を見た際の 方向で表現した方が記載しやすい場合もある。今回は、奥 壁側を見た際の左側を西側壁、反対側を東側壁と呼ぶ。実 際には、石室の中軸線は約46度傾いており、正確には北西 側と南東側となるが、簡便に記載するために、西側壁、東 側壁と呼称する。

引用・参考文献

菊地芳朗ほか 2023『前田川大塚古墳 1・大仏古墳群 1』福 島大学考古学研究報告第 16 集

- 小林行雄編 1964 『装飾古墳』 平凡社
- 仲林篤史 2023「古代瓦の三次元データを用いたシェーディ ング処理の検討」『デジタル技術による文化財情報の記 録と利活用 5』奈良文化財研究所研究報告 37、75~90 頁、独立行政法人国立文化財機構奈良文化財研究所
- 姫野健太郎編 2000『朝倉の古墳と埴輪』朝倉市文化財調査 報告書第9集
- 藤沢敦・鹿納晴尚・吉野高光・小池雄利亜 2023「福島県清 戸廹横穴の高精細 3 次元計測」『Bulletin of the Tohoku University Museum』No. 22、7 ~ 38、東北大学総合学 術博物館
- 藤沢敦・大橋葵2023「経の塚古墳と東北の埴輪」『国家形 成期におけるヤマト政権と地域権力の相互関係の再定 義-東北地方を中心に-』科研費報告書、35~44頁、 福島大学行政政策学類

図6 湯の隈古墳石室正射投影図(天井)

図7 湯の隈古墳石室正射投影図(西側壁)

図9 湯の隈古墳石室正射投影図(玄室)

X線CTを用いた多賀城廃寺の泥塔の技術・型式学的研究 Techno-typological study of clay stupas from the Tagajo abandoned temple site using X-ray CT

廉 禕 * · 鹿納 晴尚 ** · 鹿又 喜隆 *

* 東北大学大学院文学研究科 ** 東北大学総合学術博物館

Yi Lian*, Harumasa Kano** and Yoshitaka Kanomata*

*Department of Archaeology , Graduate School of Arts and Letters, Tohoku University, **The Tohoku University Museum

Abstract: The Tagajo fort site is located about 10km northeast of Sendai City, Miyagi Prefecture. It served as the central political and military facility of the ancient Tohoku region and the *Mutsu Kokufu* in the Nara and Heian periods. It is presumed that the Tagajo fort and its affiliated temple named "*Tagajo Haiji*" were built almost at the same time in the Nara period. A total of 2,683 clay stupas ware excavated around the lecture hall feature, including 124 complete ones.

In this paper, we presented 29 clay stupas and 2 carbonized paper balls inside the clay stupas from the *Tagajo Haiji*, all stored in the Archaeological Laboratory of Tohoku University. We used X-ray CT (Computed Tomography) to scan and observe the detailed condition inside the clay stupas, and classified the clay stupas into eight types based on the comprehensive analysis of their overall features, manufacture, clay, color, and shape.

The clay stupas of the *Tagajo Haiji* are presumed to have been placed aside the clay statues in the lecture hall after they were completed, almost the same as the way Buddhist statues or clay statues was treated in the Heian period. In addition, we found they were more likely colored and painted with pigments as making clay statues, rather than fired like pottery. Furthermore, as the paper balls inside the clay stupas were burned or heated in a state lacking enough oxygen, the incomplete combustion makes it possible to unfold these partially carbonized paper balls and further analyze their original contents.

1. はじめに

1.1 多賀城廃寺の概要

多賀城跡は宮城県仙台市の北東約 10km にある史跡であ り、奈良・平安時代の陸奥国府として古代東北地方の政治的・ 軍事的中枢であった。多賀城碑によれば、多賀城は神亀元 (724)年に大野東人によって創建され、その附属寺院とし て多賀城廃寺がほぼ同時期に創建されたと推定される。多 賀城跡は大正 11 (1922)年に国史跡に指定され、昭和 35 (1960)年度から 40 (1965)年度まで政庁跡と廃寺跡の発 掘調査が行われた。その結果、史跡の価値が一層高まった ため、昭和 41 (1966)年に特別史跡に昇格された。その後、 昭和 41 年度から 43 (1968)年度にかけて史跡公園の整備 作業によって多賀城廃寺の未調査部分の発掘調査が行われ た(宮城県教育委員会・多賀城町 1970、本論では報告書

と記載)。

多賀城廃寺跡は多賀城の南東約1kmの丘陵上に位置し、 東北から西南方に延びる自然地形に沿って建てられた(図 1)。昭和36・37(1961・62)年度に主要伽藍跡の発掘調 査を実施し、昭和41~43(1966~68)年度の発掘調査の 結果と合わせて、当時の東北大学教授であり、多賀城跡全 体の調査担当者でもあった伊東信雄氏の編集によって、昭 和45(1970)年に発掘調査報告書が刊行された(岡田 2004)。多賀城廃寺の伽藍配置は中門・講堂を南北にし、周 囲を築地塀で囲み、築地塀内を講堂から見て右が金堂、左 が塔の観世音寺式伽藍配置であった(図2)。

泥塔の出土位置(図3)は講堂跡に集中し、計2683 点が 出土した。うち124 点が完形である。ほかの金堂跡・塔跡・ 僧房跡などから11 点が出土し、遺跡全体では総計2694 点 になる。また、講堂跡の基壇上から合計207 点が出土し、

図1 多賀城廃寺の位置と周辺の遺跡(宮城県教育委員会 2014 一部改変)

図 2 多賀城廃寺跡全体図 (宮城県多賀城跡調査研究所 2022)

基壇外から2131点が出土した。自然地勢の影響で、主に北 側・西側に集中する(宮城県教育委員会・多賀城町 前掲)。 泥塔が含まれていたのは表土下の黒味を帯びた褐色の堆積 土層で、瓦や焼土・焼木・塑像破片が混じった状態であった。

1.2 研究の経緯

多賀城廃寺出土泥塔は発掘後に整理され、完形資料のうち23点と泥塔内の炭化物1点が報告書に掲載された。報告書では未報告だった大部分の泥塔は現在、宮城県教育委員会に所蔵されている。報告書に掲載された泥塔23点と炭化物1点、金堂跡から出土した泥塔片7点とその他の未報告の資料の一部は東北大学考古学研究室が保管し、平箱2箱にまとめられている。そのほか、木箱10箱に多賀城廃寺の塑像・塑壁と共に泥塔の一部が収納されている。これらの未整理資料を対象に令和4(2022)年度の考古学実習・研究実習で水洗や整理作業を開始し、再検討を始めた。また、令和5(2023)年2月・4月から7月にかけて東北大学総合学術博物館において東北大学が保管する泥塔14点と炭化物2点のX線CT撮影を実施した。また、令和5(2023)年度には報告書にある泥塔23点と講堂跡から出土した未報告
Α	В	С	D	E	F	G	H	Ι	J	K	L	Μ	Ν	0	P	Q	R	S
	1	4 8	18 6	18 9		33					41 16	33 14	73	22 1	13 2	2		
	22	27	123	199	88 _21_		6		5		10	11	8	31	38	3		
2	10 5	7	8	21	16 6		2	1	2	1		2					1	
16	6 2	1	1	21	1			1		1				2			1	
6 3		22	2	1				23	23	1	1						1	
1	8 1	63		2 1	1		2	1 2	1	6 1								
2	4	5					- 1		2		1					1		1
12	3	24	1	1	2	1 2	1	1	3			1				2	1	
41	21	24	1															
136	50		6 6	23													1	
104	44	2	8 1	13 11	1	1	3			1					3			
5	42	- <u>22</u> - 8	-81 29	-44-	- 28 18	-5-	-3-2	1-1	-1-	2	-1							
5	4	1	15 11	56	21 8	1 2	9 4	3	1	1								

⁽¹方眼は2m四方,破線は基壇線,ゴチック数字は塔身部数,普通数字は相輪部数をあ) らわす。このほか,出土地点の明確にわからぬもの塔身部232個,相輪部113個ある。)

図3 講堂跡出土泥塔分布図(伊東 1970)

の泥塔3点、合計29点の再整理・属性抽出、及び一部の写 真撮影を実施した。

宮城県教育委員会に所蔵されている泥塔については、鈴木・高橋両氏が87点を報告している(鈴木・高橋 2023)。 それらは、底部から相輪部にかけて85%以上が残存し、かつ相輪部の五輪が両面とも残存しているものである。そして、多賀城廃寺の変遷の I ~ V 期を紹介し、これらの泥塔の特徴を説明した上で、その所属時期をおよそ9世紀後葉~11世紀前半頃と推測した。また、両氏は泥塔の特徴に関して、相輪部と塔身部の2つに分け、屋根を塔身部に帰属させた。そして、泥塔は型作りで基壇と露盤は表現されておらず、泥塔両面の相輪部の特徴の違い、すなわち笵傷を持つかどうかを判断標準とし両面をAB面に分けることができると指摘された。さらに、87点中7点の泥塔を対象にX線通過撮影が実施され、相輪部頂部の穿孔、塔身部の中空部と小紙片の特徴が把握された。

本論で実施した X線 CT 分析では、さらに明瞭な泥塔の内 部構造を理解でき、中空部の具体的な形状・小紙片の構造・ 胎土の密度なども把握できる。また、多賀城廃寺の泥塔に 関する型式学的分類はこれまで十分には行われてこなかっ たという問題点がある。報告書では伊東氏が泥塔を(1)から (6)までに分類しているが、基準が不統一であったため、体 系的に検討する余地が残されている。

1.3 研究の目的

本研究の目的は多賀城廃寺出土泥塔を型式学・痕跡学的 に分析し、それらの内部構造を理解するとともに製作技術 を復元することである。そもそも、多賀城廃寺の泥塔は、 平安時代の仏像・塑像の製作工程(奈良文化財研究所飛鳥 資料館 2023)と同様に、製作・完成後そのまま講堂内の 塑像の周りに据えられたと推定される。それらは土器のよ うな焼成が行われず、塑像のように着色・顔料の塗布が行 われた可能性もあるが、それを客観的に示す必要がある。 また、これらの泥塔の製作プロセスを確実な根拠を示しな がら具体的に推測し、何種類の製作法が存在したのかを明 らかにする必要がある。さらに、泥塔を型式学的に客観性 をもって分類し、仏教遺物として泥塔と塑像との関係について製作・使用・廃棄などの行為の諸点から理解したい。

2. 泥塔の分析

2.1 泥塔の形態的特徴と胎土

多賀城廃寺の泥塔は宝塔形で、主に相輪部・笠部・塔身 部の3つの部分から成る(図4)。そして、全ての泥塔は2 面の笵で粘土を挟んで作る型作りである。笵からはみ出し た鰭状粘土(本論では鰭部と記載)があり、笵の相輪部は 宝珠と五輪を彫って表現し、全ての泥塔は笵から取り出さ れた後、再び手で形を調整される。また、このあとに説明 するID-11(図版7下)、XIID-13(図版4上)、XIIE-2(図版 1上)、XA-22(図版11.4)、XIID-19(図版11.5)以外の全 ての泥塔は、相輪部の特徴(詳細は後述)からいずれも同 じ笵型で製作されたと推測できる。

XIID-13、XIIE-2、XA-22、XIID-19の4つは笵型から外した後の調整によって主に相輪部の形状が大きく変化した(3.1 に詳述する第 || 群)。また、XIID-13、XA-22、XIID-19の3つの相輪部表面には元の五輪が押しつぶされたことによる多層の帯状痕跡が残っているため、ほかの泥塔と同じ笵で製作されたとは断定できないが、少なくとも型作りの工程を経たことが分かる。XIIE-2の相輪部は調整が激しいため元々の形状をほぼ残していないが、第 || 群のほかの個体と似る調整痕が確認できるため、型作りの工程を経た後に形状を調整したと推測される。

ID-11 の相輪部は特殊で、五輪の形が他型式のような算盤 玉形とならず、下から1番目の輪が側面に平坦面をもつ円 筒形となり、下から2番目の輪はやや扁平な球体になるた め、ほかの泥塔と別型と考えられる。

また、本論では多賀城廃寺の泥塔を分析した鈴木・高橋 両氏の属性基準(鈴木・高橋 前掲)に倣い、五輪の上か ら2番目と3番目の間に笵傷のない面をA面、笵傷のある 面を B 面とする。一部の泥塔の相輪部の上部に直径 2mm ほどの穴、すなわち X 線 CT の断層図で見られる「棒差し痕」 が確認される。笠部は笵から取り出された泥塔に粘土を貼 り付け、親指と人差し指で摘み出されたものである。その 横断面はやや不整な円形または円に近い多角形であり、笠 部の上面と下面に指の腹で順次に押された凹みや、ナデ調 整痕、指紋が確認できる。塔身部は横断面がやや不整な円 形・楕円形であり、筒状もしくは円錐状を呈する。29点の うち底部が残るのは27点であるが、その大部分は平底であ り、2点の底部だけが内湾する。また、全ての泥塔の塔身部 にはナデ調整が施され、一部の泥塔では表面全面に指紋が 確認される。そして、ほぼ全ての泥塔の宝珠と五輪(以下、 輪珠と記載)は何かに押され、もしくは意図的な調整によっ て元の形が改変されたほか、一定度の摩滅を帯びている。

泥塔の特徴は以下の諸点である。まず、元々の笵には宝

図4 多賀城廃寺泥塔模式図、IIF-18 をもとに

珠と五輪がある。A面の五輪(図 5.1)は全て算盤玉のよう な形で、それらの右側は上から下まで少しずつ張り出し、1 番目の輪の下縁は両端とも大きく反り返り、右側は左側よ りも上向きで、3番目・4番目の右側の下縁とほぼ平行する。 ほかに、笵傷のある面(B面)には五輪(図 5.2)の上から 1番目と2番目の輪の右縁はほぼ一直線になり、3番目の輪 の右縁は1・2番目よりもわずかに張り出す。3番目の輪の 厚さは五輪の中で厚い方であり、特に4番目の輪よりも厚 い。また、3番目の輪は全体的に短い円筒形を呈し、4番目 の輪は算盤玉にように両端を狭めている。これらの特徴か ら、笵傷が明瞭ではない場合でも、ある程度泥塔のAB面を 識別でき、さらにその製作プロセスから型式を区別できる。

また、五輪以のさらに下に、上から6番目の層があり、 明白な例は図版6上のIIE-9のように彫られている。型押し 段階で既に存在し、その後の手調整によって6番目の層が 押しつぶされて見え難くなる個体もある(図版5上UK-3、 図版6下 XID-18)。その形は五輪よりも側面が平坦になり、 指でナデ調整によって笠部と密着させる。五輪との間の溝 が基本的に残されるため、6番目の層を相輪部の基台・露盤 として意識的に作った可能性がある。

表2に示すように、29点中完形は22点であり、塔身番 号 IIE-9、IIE-22 の 2 点は報告書の図版に掲載されていない。 その他の20点は報告書に掲載されており、それらの番号 は、II D-14、IIE-2、IIE-8、IIF-18、IIH-1、IIL(01)(括弧内の 数字は塔身番号に不明な部分があるためつけた仮番号、以 下の UK で始まる番号も同様である)、IIM-2、IIO-14、IIIB-3、 VIIK-2、IXA(01)、XA-22、XIA-2、XID-18、XIID-15、XIID-17、 XIID-19、XIIE-2、XIIE-6、UK-4W(UK=Unknown、W=West、 出土位置不明のもので、塔身部に「講堂西」の文字あり) である。欠損品の泥塔は7点あり、ID-11、IXB-3、UK-2W、 UK-3 は報告書に記載がない。ID-11 は相輪部上半と塔身部 の一部を欠損し、IXB-3は相輪部・笠部を欠き、塔身部の一 部を欠損する。UK-2W は基部を欠損し、UK-3 は塔身部大部 分を欠損する。IIE-4、XID-18、UK-5N は報告書に記載があり、 IIE-4 は塔身部の下半分を欠損し、XID-18 は A 面大部分を欠 く。UK-5N は塔身部の一部が欠損した個体である。

完形の泥塔の重量は33.4~82.6g、高さは58.6~ 94.2mm、最大幅は31.4~43mmである。相輪部が存在す る泥塔は29点中27点であり、上面の棒差し痕は74%に確 認される。笵傷は81%に確認され、笵傷がAB面で確認で きない個体については同様な型式的特徴を示す(詳細は3.1 に後述)。

笵傷のほか、AB両面に幾つかの特徴的な痕跡があり、
 XID-18・IIIB-3・IIF-18・IXA(01)・UK-3の笵傷のない面(A面)の輪珠の左側には、縦方向に長さ25mm程、幅4mm程の
 木目痕が確認される(図版 9.1)。

泥塔の胎土の色は『標準土色帖』を参照し、各個体の一 番面積の大きい部分の3箇所の色を判定し、総合的判断し た。また、土質の情報を加えて以下の7類に分けた。なお、 表中の型式は、3.1で示しており、切断面色は2.2で後述す るCT値を疑似カラー化した色を示している。

type1: 直径 2mm 以下の結晶質の石英粒を 3-5% 程度と、 3-5mm 程の転摩した不透明の砂粒を 1% 程度含み、その一 部は表面から剥落し、窪みを残している。胎土は均質・極 細粒で高密度、粘着性も高く、素手で触っても粉末が剥が れない。色調は橙色に集中する。

表 1.1 type1 に該当する泥塔

塔身番号	報告書図 版掲載	重量 (g)	型式	色調	色相 明度/彩度	type	切断面 色
ID-11	無し	63.9	Illc-8	橙	5YR 7/8	1	紺青
XID-18	図54-2	56.9	la2-4	橙	5YR 6/6	1	青
XIIE-2	図55-16	37.1	IIb2-7	黄橙	7.5YR 8/8	1	赤

type2: 直径 0.5-3mm 程の結晶質の石英粒を 2% 程度含

む。胎土は均質・極細粒で高密度、粘着性も高く、素手で触っても粉末が剥がれない。厚さ 0.5mm 程の薄い白色膜がごく 僅かに表面の一部に確認できる。色調はにぶい黄橙色に集 中する。

表 1.2 type2 に該当する泥塔

塔身番号	報告書図 版掲載	重量 (g)	型式	色調	色相 明度/彩度	type	切断面 色
IIF-18	図54-1	66.2	la1-1	にぷい 黄橙	10YR 6/3	2	黄
XIID-17	图55-14	52.2	la1-6	にぷい 黄橙	10YR 6/3	2	黄
UK-3	無し	33.3	la2-4	灰黄褐	10YR 4/2	2	背
IIE-8	図54-10	39.4	Ja1-4	橙	7.5YR 7/6	2	1.01
IIIB-3	図54-3	59.0	la1-1	にぶい 黄橙	10YR 6/3	2	-
IXA(01)	図55-13	44.8	la1-6	橙	5YR 7/6	2	1.4

type3: 直径 1mm 程の結晶質の石英粒を 2% 程度と、直径 0.5-1mm 程の白色粒子を 1% 程度含む。胎土は均質・細粒で中~高密度、粘着性は中程度で、素手で触ると粉末が少し剥がれる。0.5mm 程の薄い白色膜が表面に部分的に確認でき、さらにその下にはもう一層の薄い粘土膜があり、 亀裂と剥落によって下位の粘土と分かれる。色調はにぶい 黄橙色に集中する。

表 1.3 type3 に該当する泥塔

塔身番号	報告書図 版掲載	重量 (g)	型式	色調	色相 明度/彩度	type	切断面 色
IID-14	図54-5	63.2	lb1-2	黄橙	7.5YR 8/8	3	緑
IIE-2	图55-19	59.5	lb1-5	に <i>ぷい</i> 黄橙	10YR 7/4	3	黄
IIL(01)	图54-9	48.1	lb1-2	に <i>ぷい</i> 黄橙	10YR 6/4	3	黄橙
IIH-1	図54-8	53.1	lb1-2	黄橙	7.5YR 8/8	3	-
IIM-2	図54-4	59.7	lb1-2	にぶい 黄橙	10YR 7/4	3	
XIID-15	図55-20	48.6	lb1-2	橙	7.5YR 7/6	3	\sim
XIID-19	図55-18	33.4	Ilb2-7	浅黄橙	10YR 8/4	3	Dec

type4: 直径 1mm 以下の結晶質の石英粒を 5% 程度と、 2-5mm 程の不透明な砂粒を 3% 程度含む。胎土は均質・細 粒で中密度、粘着性は高く、素手で触っても粉末が剥がれ ない。色調は灰黄褐色に集中する。

塔身番号	報告書図 版掲載	重量 (g)	型式	色調	色相 明度/彩度	type	切断面 色
IIE-9	無し	43.6	lb1-5	灰黄褐	10YR 6/2	4	青
XIID-13	図55-15	44.9	Ila1-7	灰黄褐	10YR 6/2	4	黄緑
IXB-3	無し	43.1	la2-3	灰黄褐	10YR 6/2	4	黄緑
VIIK-2	図54-7	35.2	lb1-5	灰黄褐	10YR 6/2	4	~

表 1.4 type4 に該当する泥塔

type5: 直径 0.3mm 以下の結晶質の石英粒を 7% 程度と、 0.5-1mm 程の白色粒子を 4% 程度、3-5mm 程度の不透明で 褐色の小円礫を 3% 程度含み、その一部は表面から剥落し 窪みを残している。胎土は均質・中細粒で中密度、粘着性 は高く、素手で触っても粉末が剥がれない。色調は褐色に 集中する。

表 1.5 type5 に該当する泥塔

塔身番号	報告書図 版掲載	重量 (g)	型式	色調	色相 明度/彩度	type	切断面 色
110-14	図54-11	35.7	lb1-5	黄橙	5YR 8/8	5	10+01
XA-22	图55-17	39.2	lla1-7	にぶい 赤褐	2.5YR 6/6	5	1
XIIE-6	図55-21	54.8	lb1-5	褐灰	5YR 5/1	5	1.7

type6:直径 0.5mm 程の石英や長石などの粒子と、3mm程の不透明で褐色の小円礫 3%程度を含む。胎土は均質・中細粒で中密度、粘着性はやや高く、素手で触ると粉末が少しだけ剥がれる砂質粘土。色調は黄橙褐色に集中する。

塔身番号	報告書図 版掲載	重量 (g)	型式	色調	色相 明度/彩度	type	切断面 色
UK-2W	無し	44.5	la2-3	灰黄褐	10YR 6/2	6	紺青
IIE-4	図55-22	48.0	la2-3	浅黄橙	7.5YR 8/6	6	1.0
UK-4W	図54-6	43.2	la1-3	黄橙	7.5YR 8/6	6	1.04
UK-5N	図55-23	46.8	la2-3	灰赤	2.5YR 5/2	6	12-11

表 1.6 type6 に該当する泥塔

type7: 直径 5-15mm 程の丸い泥岩粒と 1mm 程の白色不透明の粒子を含む。胎土は均質で中高密度、粘着性はやや低く、素手で触ると粉末が手に付く砂質粘土。色調は浅黄橙色に集中する。

表17	tvne7	に該当	す	る泥塔
10 1.7	LYDC/		2 .	2/10-0

塔身番号	報告書図 版掲載	重量 (g)	型式	色調	色相 明度/彩度	type	切断面 色
IIE-22	無し	82.6	Ic-3	浅黄橙	10YR 8/3	7	背
XIA-2	図54-12	56.7	la1-6	浅黄橙	10YR 8/3	7	1 mar.

2.2 X線 CT による解析 〈分析方法〉

X線CTを用いて泥塔14点と炭化物2点の内部構造お よび密度状況を観察した。分析では東北大学総合学術博 物館に設置されているCTスキャンシステムScanXmate-D180RSS270高出力型大型標本用装置(図6)、断層像の再 構成ソフト「coneCTexpress」と撮影データの表示及び解析 ソフト「Molcer / MolcerPlus」は(両者は共に有限会社ホ ワイトラビット)を使用した。

図6 X線CT撮影装置(奥側)

泥塔全体を観察するための CT 撮影の条件は、180kv, 120 μ Aの X 線強度で 2000 プロジェクション、拡大率は泥塔 の大きさによるが全体が入るように普通 2 倍程度で、空間 分解能は 1 ボクセルの 1 辺の大きさはおよそ 60 μ m であ る。炭化物単体の CT 撮影での設定は、50kV, 200 μ Aの X 線強度で、2000 プロジェクションで拡大率は 9 ~ 17 倍で 1 ボクセルの 1 辺の大きさは約 7 ~ 17 μ m である。なお、 どちらの X 線透過撮影画像のマトリックスは幅 1856pixel、 高さ 1472pixel である。

同じX線強度による撮影条件とCT再構成条件で得られた 泥塔のCT断層像からMolcerで作成された断面図の擬似カ ラーは、X線吸収係数の分布を表しており、ほぼ密度分布 に相当する。図版8で示した擬似カラーバーでは、上の茜 色に近いほど密度が高く、逆に紺色に近いほど密度が低い。 図版8の炭化物の断面図においても同様に密度の高低を表 現できる。

〈泥塔の内部構造〉

図版 1 ~ 7 では、泥塔 14 点の写真(1~3) および A 面・ 側面・B 面の 3D モデル図(4~6)、B 面からの X 線透視写 真(7)、B 面からの擬似カラーで表す断面図(8)、上面の 写真(9) を表示した。

泥塔は全て空洞の存在が確認できる。空洞の形は統一性 がなく、その位置は基本的に相輪部以下、塔身部にある。 XID-18の空洞は一部相輪部に至る。そして、相輪部のある 泥塔は全てその上端に長細い棒差し痕が確認できる(図版 6)。また、X線透視写真と断面図から、ID-11(図版7下) 以外の全ての泥塔の空洞に炭化物塊があり、その炭化物が 多層的構造であることを確認できる。そのほか、IIE-2のボー ル状炭化物とその周りの球状空洞(図版3上)、および IIF-18・XIID-17の細長い炭化物とその周りの帯状空洞(図版2) の関係から、泥塔内の空洞の形はその内部の炭化物の形と 一致することが分かる。また、断面図の擬似カラーを見ると、 密度が高い方から順に、泥塔を赤色(XIIE-2)・黄橙色(IIL(01))・ 黄色(IIE-2、IIF-18、XIID-17)・黄緑色(IXB-3、XIID-13)・ 緑色(IID-14)・青色(IIE-9、IIE-22、XID-18、UK-3)・紺青 色(ID-11、UK-2W)の7組に分けることができる。

〈炭化物・小紙片の内部構造〉

炭化物2点中の1点はIE-2内のもので、IIE-2C (C=Carbon) と呼ぶ。もう1点は所属した泥塔が不明のため、仮番号 UK-1Cとした。図版8の8.1、8.2に示すように、左側は3D モデルおよび断面図で、右側は実物写真である。

IIE-2C は径約 7mm の丸みのある形状で、折り畳んだ紙の 隙間に径約 0.5mm の中空のボール状物体がいくつか挟まれ ている。UK-1C の長さは約 16mm、幅約 6mm、厚さ約 1.5mm であり、真中が捻られてリボン状を呈する。その縁辺には 密度の高い砂粒が付着し、肉眼で見ると灰白色の帯が断続 的に付着している。断面図の擬似カラーで示すように、IIE-2C の密度は UK-1C よりやや高く、肉眼で観察すると、IIE-2C の色は UK-1C より少し黒みが濃い。

3.考察

3.1 泥塔の形態分類と型式

X線CT撮影が行われていない泥塔15点は、図版9~11 に写真を掲載している。本論では、泥塔の型式を I ~III群、 a1 ~ c組に分類し、その組み合わせによって型式を示した (例えば、IIa1-3型式)。この分類は今回の観察及び分析に基 づいて示したものである。各泥塔の具体的な型式分類を表2 に示す。

|~||群は、相輪部・笠部・塔身部の3つの部分の揃い 方と相輪部の最も基本的な特徴に基づいて分類する。 **|群**:相輪部・笠部・塔身部の3つが全部揃い、各部分の元の形が判別できるもの(図版9・10・11.1~3)。

||群:相輪部・笠部・塔身部の3つが全部揃い、相輪部 全体がナデ調整により元の形がほぼ磨り消されたもの(図版11.4~5)。

Ⅲ群:相輪部・塔身部の2つが揃い、笠部のないもの(図版6のID-11を参照)。

a1~c組は、泥塔の塔身部の特徴によって分類する(図7)。

a1:塔身部は筒状あるいは下位がやや開く円錐状を呈し、 基部が徐々底部に向かってつぼまり、下端が丸みをもつ平 底である。

a2:塔身部は筒状あるいは下位がやや開く円錐状を呈し、 基部が底部に向かって直線的に開き、下端がやや丸みをも つ平底である。

b1:塔身部は筒状、あるいは中部に膨らみがあり、基部 は少し外反して開き、平底である。

b2: 塔身部は筒状、あるいは中部に膨らみがあり、基部 が少し外反して開く傾向があり、上げ底である。

c:塔身部は筒状、あるいは中部に膨らみがあり、基部に は帯状の基台があり、平底である。

上記の検討を経て、泥塔の共通する特徴、および製作プロセスにおける製作意図を含めた人為的特徴に基づいて以下の1~8類型に分類できる。類型1が2点、類型2が5点、類型3が6点、類型4が3点、類型5が5点、類型6が3点、類型7が4点、類型8が1点であり、詳細は以下となる。

類型1:IIF-18・IIIB-3

全体形状は | 群で、塔身部は 2 点とも a1 組である。

全体の高さは83~87mmである。輪珠は元の形を保ち、 相輪部にナデ調整がほぼ行われず、AB面の対称性、すなわ ちAB両面それぞれの相輪部と笠部の位置合わせの精度が高 くない。塔身部はナデ調整が行われたため、型合わせ段階 の両面の位置合わせの痕跡がだいぶ改変された。相輪部に は鰭部が意図的に残され、形状も調整される。厚さは平均 4mm程。上端部はやや尖り、全体の形は火焔形光背と似る。 塔身部の両側にも鰭部が少し残され、笠部の鰭部の長さは 約10mmになり、基部にも少しだけ残る場合がある。また、

図7 泥塔の塔身部類型

塔身部に指調整が多く施されたため、型合わせの笵線のあ る両側中央の鰭部粘土が押し消され、残された鰭部が「▽」 状を呈する。笠部は円形に近い多角形で、幅は平均10mm 程で、厚さは均一ではない。また、上下面共に親指と人差 し指での摘み出しによる凹みがあり、反時計回りで調整さ れる傾向は弱く、下面はナデ調整によってなだらかになり、 塔身部との境界が明確に屈曲する。

類型2:IID-14・IIL(01)・IIH-1・IIM-2・XIID-15

全体形状は | 群で、塔身部は 5 点とも b1 組である。

全体の高さは82~89mmである。輪珠の元の形がほぼ 残され、相輪部がナデ調整によって少し変形する。表面に は少し摩滅がある。五輪部は均一な円筒状を呈し、AB両面 の対称性がやや強い。相輪部には五輪の両側の鰭部が残存 せず、鰭部の厚さは平均3mm程である。宝珠の周りには 鰭部があり、その幅は五輪の幅に等しく、宝珠の上部の鰭 部は高さ3mm程を超え、鰭部全体の形は楕円形を呈する。 塔身部の両側には鰭部がほぼ残らない。笠部はほぼ円形で、 幅は平均10mm程、厚さは均一で、上面に指頭圧痕が反時 計回りの順番で並び、下面に時計回り順で並ぶナデ調整痕 があり、塔身部との境目に並ぶ爪痕がある。

類型 3: IIE-22・IIE-4・IXB-3・UK-2W・UK-4W・UK-5N

全体形状は || 群で、塔身部は 1 点が a1 組(UK-4W)、4 点が b2 組である。

全体の高さは76~94mmである。輪珠の元の形はほぼ 残され、表面は少し摩滅があり、AB両面の対称性は強くな い。相輪部には五輪の両側の鰭部が2mm程残存し、鰭部 の厚さは平均5mm程である。その上端部は宝珠の高さを 越えず、鰭部全体の形は楕円形を呈する。塔身部の両側に も鰭部が笠部を超えて少し残されるが、基部には残らず、 鰭部の長さは約5mmである。結果的に、笠部と鰭部が「T」 状を呈する。笠部は円形に近い多角形で、幅は平均9mm程、 厚さは均一で、上面に指押しによる反時計回りの順で並ぶ 凹みがあり、下面に時計回りの順で並ぶナデ調整痕がある。 笠部と塔身部との境界が明確に屈曲する。

類型4:XID-18・IIE-8・UK-3

全体形状は | 群で、塔身部の 1 点が a1 組(IIE-8)、2 点が a2 組である。

全体の高さは74~85mmである。輪珠は元の形を保ち、 相輪部にナデ調整をほぼ施されず、AB両面の対称性は強い。 相輪部には五輪の両側の鰭部が幅2mm程残存し、厚さは 平均1mm程で、薄いため崩れやすい。元の鰭部が輪珠に沿っ て楕円形であったが、鰭部が欠損し輪珠だけを残す傾向に ある。塔身部の両側に鰭部が少し残され、笠部の下位に長 さ約4mmの鰭部があるが、基部には残らない。結果的に、 笠部と鰭部が「T」状を呈する。笠部は円形に近い多角形 で、幅は平均9mm程、厚さは均一で、縁辺が上にそり反る。 笠部の上面に指頭圧痕が反時計回りの順で並び、笠部の下 面がナデ調整によってなだらかになり、塔身部との境界が 明確に屈曲する。

類型 5: IIE-2・IIE-9・IIO-14・VIIK-2・XIIE-6

全体形状は | 群で、塔身部は 5 点とも b1 組である。

全体の高さは75~86mmである。輪珠の表面には摩滅 があり、特に宝珠と上から1~2番目の輪までの摩滅が強い。 宝珠の上端部は摩耗され、輪珠は円錐状を呈し、AB両面の 対称性がやや強い。相輪部には鰭部がほぼ残存せず、厚さ は平均2mm程である。塔身部の両側に鰭部がほぼ残されず、 笠部を超えて長さが約3mmに達する場合もあり、基部に は鰭部が残らないため、笠部と鰭部が「T」状を呈する。笠 部はほぼ円形で、幅は平均8mm程、厚さは均一で、縁辺 が少し上にそり反り、上面に指頭圧痕が反時計回りの順で 並び、下面はナデ調整によってなだらかになる。笠部と塔 身部との境界が明確に屈曲する。

類型 6:XIID-17・IXA(01)・XIA-2

形状は1点が | 群(IXA(01))、2点が || 群で、塔身部は3 点ともa1 組である。

全体の高さは65~71mmである。輪珠の摩滅が強く、 特に宝珠と上から1~2番目の輪までが強く摩耗され、相 輪部全体が銃弾状を呈し、AB両面の対称的性は強くない。 相輪部には鰭部がほぼ残存せず、厚さは平均2mm程である。 塔身部の両側に鰭部がほぼ残らず、笠部を超えて長さは約 3mmに達する場合もあり、基部には鰭部が残らず、残され た鰭部と笠部は「T」状を呈する。笠部はほぼ円形で、幅は 平均8mm程、厚さは均一で、縁辺が少し上に反って、上 面に指頭圧痕が反時計回りの順で並び、下面はナデ調整に よってなだらかになり、塔身部との境界が明確に屈曲する。

類型7:XIID-13・XIID-19・XIIE-2・XA-22

全体形状は II 群で、塔身部は 2 点が a1 組(XIID-13・XA-22)、2 点が b2 組(XIID-19・XIIE-2)である。

全体の高さは 59 ~ 79mm である。相輪部が摩耗し、円 錐状を呈する。AB 面は分別しにくい。塔身部にも鰭部が 残らない。笠部は円形に近い多角形で、幅は平均 7mm 程、 厚さは均一である。泥塔全体にナデ調整による反時計回り の順で並ぶ調整痕が残る。

類型 8:ID-11

形状はⅢ群で、塔身部はc組である。

全体の高さは推定 90mm を超える。五輪の形が他型式の ようなに算盤玉形とならず、下から 1 番目の輪が側面に平 坦面をもち、厚さ 5mm の円筒形となる。下から 2 番目の 輪はやや扁平な厚さ 10mm の球体であり、相輪部に鰭部が ほぼ残らず、鰭部の厚さは平均 3mm 程である。笠部はない。 塔身の基部の両側に鰭部が少し残り、長さは約 20mm であ る。また、基部に帯状の幅 10mm 程の基台があり、残され た鰭部と基台が共に「丄」状を呈する。また、泥塔内部に 空洞がなく、底部に棒刺しによる幅 4mm 程、深さ 15mm 程の盲孔がある。

3.2 泥塔の製作プロセスの復元

砂粒が紙玉の縁辺に多く付着する点から、当時、紙玉は 両笵を合わせる前、片側の胎土に押し入れた際に、胎土内 に混ざっている砂などが紙玉の縁辺から多層構造の隙間に 入り込んだと推測できる。このような泥塔の痕跡学的特徴 を加えると、泥塔の製作プロセスを推測できる。まず、両 面の笵にそれぞれ粘土を詰め込み、次に文字を書き終えた 紙を折り畳んで、直に粘土に押し込み、両面の笵を挟み合 わせる。次に、1面の笵を離型した後、もう1面の笵に詰 め込まれた泥塔を、細い串などを相輪部上端に刺し、泥塔 を完全に取り出す。同じ棒差し痕は山梨県増穂町の権現堂 遺跡出土泥塔にも見られ、泥塔の中央の笠部下に棒差し痕 がある(畑 1989)。権現堂遺跡の泥塔は上下両端が大きく、 真ん中の首部が細くてもろいため、ここに刺すと泥塔を形 崩れなく笵から取り出せる(櫛原 1989)。一方、多賀城廃 寺の泥塔の全体の太さは権現堂遺跡のものと大差ないため、 相輪部上端を刺すと比較的取り出しやすい。この時点では、 泥塔はまだ笠部のない状態であり、次に指で笠部をつまん で作り出す。さらに、塔身部両側の笵線や鰭部に余った粘 土を取り除く作業などを行い、泥塔全体の形を調整して出 来上がる。

そして、泥塔 IID-14、IIE-2、IIF-18、IIH-1、IIL(01)、IIM-2、 IIIB-3、IXB-3、XIID-15、XIID-17、XIID-19、XIIE-6の12点の 表面には、薄い膜層が確認できるが、それは離型剤か着色 層のいずれかの可能性がある。離型剤として石膏粉 (CaSO₄・ H₂O)を塗布するであれば、実物に見られるような白っぽい 層が残存する(櫛原 1989)。一方、多賀城廃寺の泥塔には 白っぽい層が見えるのと同時に、XIIE-6のように表面に赤褐 色の層も存在する。また、2.1 に記述しているように、白っ ぽい層の下に、もう一つ別の薄層のある泥塔もある。この ような特殊な層のある泥塔は29点中の12点(約41%)あ るが、もし離型剤であれば、その出現率がもっと高いはず である。この12点の泥塔のうち、3点の胎土は type2、6 点が type3 であり、2点は | a1-1型式、2点は | b1-5型式、 5点は | b1-2型式であり、使われた粘土の種類とその形態 には一定の関係があったことが示唆される。

3.3 類型8について

泥塔 ID-11 (Ⅲ群) は他の泥塔と異なる特徴を持ち、五輪の形状、基台を持つ塔身部、および棒刺しによる底部盲孔の存在から、別の性格を有した可能性を示唆している。

また、泥塔 IIE-22 の製作時期は ID-11 より少し古い、も しくはほぼ同時期である可能性がある。その理由は、この 2 つが共に全長が 90mm を超えると推測され、特に塔身部の 長さが 40mm を超えた泥塔の中の大型個体であるからであ る。さらに、IIE-22 は他の泥塔と同様に、相輪部・笠部のあ る構造をもち、他の相輪部と似た個体も複数あり(類型 3)、 塔身部にも 2 面の笵で挟む前に紙玉を粘土に押し込んだこ とによる空洞が残される。輪珠の様式からも他の泥塔と同 じ笵で作られたと推定できる。これらの点から、IIE-22 は他 の泥塔と同様な製作プロセスを経たと判断できる。

さらに、他の泥塔の塔身部より明らかに大きく、ID-11 の 塔身部の寸法と近似する点と、IIE-22 の笠部は摘み出された 後に再び押され、ほかの泥塔のような明白な張り出しがな く、塔身部とほぼ同一の面となる特徴がある。ID-11 に笠部 がない点を加えると、IIE-22 は、他の泥塔と ID-11 を代表と する別型式の泥塔の間の移行型と推定できる。

IIE-22のB面の笵傷は2ヶ所ある点からも、元の木製の笵 は使用期限の限界が近づいたため、新しい笵(ID-11)に取 り替えた可能性を示唆する。現在、ID-11に関する製作時期 の検討も行っており、別稿にて報告したい。

3.4 炭化物・小紙片の考察

炭化した紙片とその断層図から、それぞれの折り畳み方 を推測できる。図版 8.3 で示すように、IIE-2C と UK-1C の step1 ~ 2 は同じで、①の書き終わった紙の長辺に沿って二 つに折り続けて②のようになり、さらに 2 回折り続けて③ になる。次の step によって紙玉が 2 つのパターンになる。 IIE-2C は③の紙の中央を 180° 捻じって最終的に④のように なる。UK-1C は③の紙をさらに丸めて最終的に⑤のように なる。

IIE-2Cの隙間に挟まれるボール状物体はスケールから、被熱した虫卵やタネなどの可能性が示唆され、さらなる同定 作業が必要である。また、IIE-2CとUK-1Cのような炭化物 の実物が完全に保存されている点と、これらの炭化物・小 紙片が泥塔内の密閉する環境に閉じ込められて受熱した点 を加味すると、泥塔内の紙玉は酸素が足りない窒息状態で 燃焼、あるいは受熱が進行し、極端な不完全燃焼を経ていた。 即ち、何かの方法を使用して、これらの炭化物状態の紙玉 を展開すれば、紙に記された内容等を解明できる可能性を 示唆している。

まとめ~課題と展望~

本論では、多賀城廃寺の泥塔の内容を詳述し、具体的に 示した。特に X 線 CT の画像を用いて、泥塔内部の詳しい 状況を示すことができた。これによって泥塔の全体的特徴、 当時の製作プロセス、およびそれらの胎土・色・形状から の型式的分類を可能にした。

一方で、幾つかの課題が残されている。まず、分析対象 とするサンプル数の増加である。宮城県教育委員会が所蔵 している泥塔を加えて分析し、全体的な特徴を確実に把握 する必要がある。

次に、泥塔の胎土分析および着色層の分析である。異なる胎土の混入物(石英、小石など)と表面にある着色層を 実体顕微鏡の観察と蛍光 X 線分析などを行い、それらの構 成元素及び鉱物成分を解明する試みが必要であり、塑像と の胎土・顔料などに関する比較研究も同様に必要である。 また、泥塔の色変化を解明するため、異なる温度での加熱 実験による粘土の収縮率と色の変化の解明を試みる必要が ある。さらに楮紙を使用し、小紙片の受熱による収縮試験、 及びその後の復元実験を行う必要がある。

最後に、多賀城廃寺の泥塔の製作年代の解明である。多 賀城廃寺の泥塔はある時点に一度だけ製作されたものか、 若しくは繰り返し行われた製作活動か、各型式の泥塔から 炭化物サンプルを取り出してそれぞれ放射性炭素年代測定 を実施することで、それらの具体的な年代を推定できる可 能性がある。さらに、当時の東北地方の仏教の展開、およ び多賀城廃寺の使用・存続期間に関する新たな情報を提供 することができる。

本論は多賀城創建 1300 年の節目に公表されることになっ たが、多賀城に関する解明すべき課題がまだまだ残されて おり、引き続き分析研究することが強く求められている。

謝辞

本研究は東北大学ヨッタインフォマティクス研究セン ター 2022、2023 年度研究助成を得て実施したものである。 本研究にあたり、東北大学総合学術博物館の藤澤敦氏には 本論文をまとめる機会をいただくとともに、様々なご指導 を頂きました。また、東北大学大学院文学研究科の長岡龍 作氏、堀裕氏、椿野智之氏、東北大学附属植物園の小林和 貴氏、東京大学史料編纂所の渋谷綾子氏、高島晶彦氏、多 賀城跡調査研究所の初鹿野博之氏、矢内雅之氏の各位から は貴重なご意見、ご教示をいただいた。ここに心より深く 感謝申し上げます。

参考文献

伊東信雄 1970 「第5章 4 泥塔」『多賀城跡調査報告 | 一多賀城廃寺跡一』 pp.72-75 吉川弘文館

- 岡田茂弘 2004 「多賀城廃寺の再検討」『東北歴史博物館 研究紀要』5 pp.1-15 東北歴史博物館
- 櫛原功一 1989 「泥塔製作技法の復元」『権現堂遺跡』 pp.58-60 増穂町教育委員会
- 鈴木啓司・高橋栄一 2023 「多賀城廃寺出土の泥塔」『東 北歴史博物館研究紀要』24 pp.33-44 東北歴史博物 館
- 奈良文化財研究所飛鳥資料館 2023 『川原寺と祈りのかけ ら』 飛鳥資料館図録第 76 冊 岡村印刷
- 畑大介 1989 「第 | 章 権現堂遺跡の調査 第 5 節 遺物 2. 泥塔」『権現堂遺跡』 pp.22-32 増穂町教育委員会
- 宮城県教育委員会・多賀城町 1970 『多賀城跡調査報告 | 一多賀城廃寺跡一』 吉川弘文館
- 宮城県多賀城跡調査研究所 2022 『宮城県多賀城跡調査研 究所年報 多賀城跡一第 96・97 次調査―』 pp.69-81
- 柳澤和明ほか 2014 『山王遺跡Ⅵ —多賀前地区第4次発 掘調査報告書─』第2章 pp.4-12 宮城県教育委員会

	i	底部に基合と 繊維込穴あり		塔身部破断	塔身部破断	塔身部破断			A 面ほぼ欠損				炭化物あり	Ю	炭化物あり			塔身部破断								塔身部破断		塔身部破断	講堂西	講堂北下	言かれた文字。
	a (mm)	21.7	38.1	39.1	43.7	38.6	35.0	43.2	38.7	43.2	30.6	39.2		40.2	37.0	41.3	37.8	40.5	41.6	40.0	37.5	40.0	29.4	35.7	27.5	43.0	26.3	41.9	36.2	42.0	身部に書
æ	五輪偏 (mm)	21.8	15.8	19.4	15.5	19.5	17.6	14.7	16.2	13.8	15.6			16.0	17.2	18.8	16.3	14.7	15.8	16.2	16.6	16.9	15.9		17.8	16.9		16.1	17.2	16.9	の時塔」
BĒ	範傷		0	0	0	2ヵ所	0	0	0		0			0	0	0	2ヵ所	0	0		0	0	0		0	0		0	0	0	にお掘
	残存 治	%09	100%	90%	95%	95%	100%	100%	100%	96096	80%	96096		100%	%06	100%	100%	100%	100%	85%	100%	100%	90%	60%	85%	95%	60%	95%	95%	100%	¥ ∗
	高 (mm)	17.5	37.2	38.7	36.2	41.2	36.9	39.9	40.0	43.2	30.6	39.2		38.8	42.2	42.8	37.8	39.6	39.8	41.2	38.6	45.8	31.6	37.9	28.9	38.7	26.3	41.9	39.0	42.4	
ΑĨ	五輪幅 (mm)	19.9	16.4	19.2	17.5	22.2	19.0	15.3	17.6	13.8	17.1		,	17.1	18.6	18.5	18.2	15.5	16.3	16.9	17.8	17.1	17.1		19.1	15.5		17.5	18.1	17.9	
	残存	50%	100%	%06	%06	95%	100%	100%	40%	960%	80%	96096		85%	%06	100%	100%	100%	100%	85%	100%	100%	%06	9609	85%	%06	96096	95%	95%	95%	
	最大幅 (mm)	20.0	18.9	18.8	19.4	22.7	20.3	15.4	17.8	15.3	17.8	17.7	,	18.1	20.1	20.3	16.9	17.5	16.5	18.0	20.9	17.5	16.9	18.9	18.9	17.8	15.3	17.5	15.8	20.7	
相輪部	最大高 (mm)	21.7	44.7	41.1	43.7	43.4	41.2	43.6	45.8	43.2	30.6	39.2		40.9	42.2	45.1	40.7	40.5	48.1	41.2	48.6	45.8	31.6	37.9	29.2	43.0	26.3	43.4	39.0	42.7	
	表面 一面 市	Α Υ	0	0	0	0	0	0	0	不明	0	0	,	不明	不明	不明	0	不明	0	0	0	0	0	0	0	不明	0	0	0	不明	
~	(ma)	· ·	37.9	35.2	30.9	37.2	37.6	33.5	35.6	31.6	38.6	31.5	32.4	35.8	35.4	34.8	34.9	35.7	35.7	28.4	36.9	35.5	35.7	32.8	37.6	35.6	34.4	39.2	32.3	36.7	
遊部	た 画		6.4	6.1	5.4	9.2	5.0	5.8	5.4	5.9	5.5	4.1	5.8	6.1	5.3	6.8	5.6	5.7	6.1	4.3	5.2	4.4	6.6	4.3	6.4	6.2	7.1	5.8	5.6	6.3	
8	最大幅 (mm)	43.7	35.9	36.1	34.7	43.0	37.0	33.8	37.6	32.6	36.9	29.4	33.8	32.2	29.6	33.5	29.7	36.8	36.7	31.4	32.3	31.6	35.1	31.2	34.9	34.4	33.3	38.5	32.2	33.9	
塔弗	*** ***	43.3	32.1	33.1	33.2	41.5	29.4	32.8	28.9	29.6	24.1	30.0	35.7	28.9	19.1	33.8	25.2	34.1	36.5	29.5	31.0	27.0	22.7	28.4	32.2	33.3	25.7	33.3	29.9	31.4	
	大幅 (第4	重 量	御部	「基部	(基部	重部	施部 ((基部	(基部	(基部	施部	施部,	電費、	施部	施部	施部 (施部	(基部	「基部	「基部	一般	施部	施部	短期	施部	短期	施部	施部	施部	短期	
全体	。 「副」 「」	43.7,	37.9	1 36.1	34.7	2 43/	37.6	33.8	1 37.6	32.6	7 38.6	31.5,	33.8	7 35.8,	2 35.4,	1 34.8	1 34.9,	36.8	36.7,	31.4,	36.9,	35.5,	35.7,	32.8	1 37.6,	7 35.6	34.4	39.2	1 32.3,	36.7,	
		64.9	87.7	81.4	81.9	94.2	82.9	84.1	84.4	78.9	64.7	71.1	46.3	79.7	68.2	89.4	73.4	81.6	89.9	73.5	87.1	75.0	63.6	71.5	70.4	83.7	58.6	84.8	76.4	81.8	
	らち 一番 うち	推	谈	菁	卌町	卌匹	嵔	黄橙	₩œ	黄緑	菁	*	横線	若書	HE	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	
	type	₩ 1 1	~	~	4	~	2	m	-	4	2	-	4	9	2	9	2	~	~	5	5	4	2	5	~	~	m	5	9	9	
胎土	iiii	57R 7/8	7.5YR 8/8	10YR 7/4	10YR 6/2	10YR 8/3	10YR 6/3	10YR 6/4	5YR 6/6	10YR 6/2	10YR 6/3	7.5YR 8/8	10YR 6/2	10YR 6/2	10YR 4/2	7.5YR 8/6	7.5YR 7/6	7.5YR 8/8	10YR 7/4	5YR 8/8	10YR 6/3	10YR 6/2	5YR 7/6	2.5YR 6/6	10YR 8/3	7.5YR 7/6	10YR 8/4	5YR 5/1	7.5YR 8/6	2.5YR 5/2	
			黄橙	にぶい黄橙	灰黄褐	浅黄橙	にぶい黄橙	にぶい黄橙	塑	灰黄褐	にぶい黄橙	黄橙	灰黄褐	灰黄褐	灰黄褐	浅黄橙	塑	黄橙	にぶい黄橙	黄橙	にぶい黄橙	灰黄褐	橙	にぶい赤褐	浅黄橙	塑	浅黄橙	褐灰	黄橙	灰赤	
		8-5	lb1-2	lb1-5	lb1-5	lc-3	la1-1	lb1-2	la2-4	lla1-7	la1-6	IIb2-7	la2-3	la2-3	la2-4	la2-3	la1-4	lb1-2	lb1-2	lb1-5	la1-1	lb1-5	la1-6	lla1-7	la1-6	lb1-2	IIb2-7	lb1-5	la1-3	la2-3	
	重量 (g)	63.9	63.2	59.5	43.6	82.6	66.2	48.1	56.9	44.9	52.2	37.1	43.1	44.5	33.3	48.0	39.4	53.1	59.7	35.7	59.0	35.2	44.8	39.2	56.7	48.6	33.4	54.8	43.2	46.8	
	残存状況	相輪部上半 · 		完売	出記	完形	完売	完売	A 面大部分欠損	完肥	完肥	完形	相輪部・塔身部 一部欠損	基部欠損	塔身部大部欠損	塔身部半分欠損	完形	完形	光光	完形	完売	完形	治形	完形	完形	光光	完形	完肥	完形	塔身部一部欠損	
	本文中の 図版掲載	図版 7 下	図版 4 下	図版 3 上	図版 6 上	図版 5 下	図版 2 下	図版 1 下	図版 6 下	図版 4 上	図版 2 上	図版1上	図版 3 下	図版7上	図版 5 上	図版 9.1	図版 9.2	図版 9.3	図版 9.4	図版 9.5	図版 10.1	図版 10.2	図版 11.2	図版 11.4	図版 11.3	図版 10.3	図版 11.5	図版 10.4	図版 10.5	図版 11.1	
	皓書の 弧掲載	単 し	꾌 54-5	<u>ସ</u> 55-19	第し	無し	푚 54-1	<u> </u>	푚 54-2	₫ 55-15	₫ 55-14	₫ 55-16	無し	無し	無し	₫ 55-22	₫ 54-10	<u> </u>	図 54-4	₫ 54-11	<u> </u>	⊠ 54-7	⊈ 55-13	₹ 55-17	₫ 54-12	₫ 55-20	₫ 55-18	₫ 55-21	푚 54-6	⊈ 55-23	
	₩ 中 第 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	ID-11	ID-14	IIE-2	IIE-9	IIE-22	IIF-18	IIL(01)	XID-18	XIID-13 E	XIID-17 E	XIIE-2	IXB-3	UK-2W	UK-3	IIE-4 2	IIE-8	EH	IIM-2	IIO-14 E	IIB-3	VIIK-2	IXA(01) E	XA-22 E	XIA-2 E	XIID-15 B	XIID-19 E	XIIE-6 E	UK-4W	UK-5N	

表2 泥塔の属性

X線CTを用いた多賀城廃寺の泥塔の技術・型式学的研究

77

図版1泥塔総合画像①

図版 2 泥塔総合画像②

図版3泥塔総合画像③

図版4泥塔総合画像④

図版 5 泥塔総合画像⑤

図版6泥塔総合画像⑥

図版7泥塔総合画像⑦

図版 8 炭化物総合画像

図版9泥塔の写真①

図版 10 泥塔の写真②

図版 11 泥塔の写真③

東北大学総合学術博物館紀要(Bulletin of the Tohoku University Museum) 編集委員会規定

2004年1月31日

(設置)

第1条 東北大学総合学術博物館(以下「博物館」という。)に東北大学総合学術博物館紀要編集委員会(以下「委員会」 という。)を置く。

(任務)

第2条 委員会は,館長の求めに応じ,『東北大学総合学術博物館紀要』(以下「紀要」という。)に掲載する論文等の審 査及び編集に当たるとともに,これに関する事項について審議する。

(組織)

第3条 委員会は、次に掲げる者をもって組織する。

一. 博物館の教官で館長が指名した者。

二. 博物館の運営委員及び兼任教官で館長が委託した者。

三. その他,特に館長が必要と認めた者。

(委員長)

第4条 委員会に,委員長を置く。

一.委員長は、第3条第1項、及び第2項の委員の互選によって定める。

二. 委員長は、委員会を召集し、その議長となり、会務を掌理する。

(任期)

第5条 第3条に定める委員の任期は、1年とし、再任を妨げない。

(議事)

第6条 委員会は、委員の過半数の出席がなければ会議を開くことができない。

2. 委員会の議事は、出席入数の過半数をもって決し、可否同数の時は、委員長が決するところによる。 (論文等の審査)

第7条 委員会は、寄稿された論文等について審査をおこなう。

2. 審査は掲載の可否,修正範囲,掲載分類等とする。

3. 審査にあたって,査読を実施する。

(委員以外の出席)

第8条 委員長が必要と認めた時は、委員以外の者を委員会に出席させ、意見を求めることができる。

(査読者の委託)

第9条 委員会は、論文等の審査にあたり、委員以外の者に査読を委託することができる。

(審議結果の報告)

第10条 委員会は,審議結果について,館長に報告する。

(庶務)

第 11 条 委員会の庶務は、博物館の事務において処理する。

(雑則)

第 12 条 この規定に定めるもののほか, 論文等の審査及び編集に関し必要な事項は, 委員会が別に定める。 附則

この規定は、2004年1月31日から施行する。

東北大学総合学術博物館『紀要』寄稿要項

- 1 東北大学総合学術博物館紀要(以下「紀要」という。)は総合学術博物館(以下「博物館」という。)に関連する諸科学に 関する研究報告,調査報告等を掲載・発表することにより,それらの学問の発展に寄与するものである。
- 2 紀要に寄稿することができる者は、次の通りとする。
 - 東北大学の教職員(同客員教官を含む)
 - 東北大学の名誉教授
 - ③ その他,博物館において適当と認めた者
- 3 原稿執筆における使用言語は英語・日本語を原則とする。
- 4 寄稿する原稿には英文要旨(300 語程度)を添付する。
- 5 原稿はA4判横書き,1ページ1段組で1,000字(40字×25行)とし,充分な余白を取る。英文の場合はこれに準ずる。 (図,写真,表,図版などはそれぞれ別ページとして準備する。さらにそれらのキャプションを別途準備する。)図,写 真類のできあがりの最大の大きさは1ページ縦22 cm×横17 cmとする。
- 6 原稿はデジタルデータで提出する。
- 7 原稿の提出は 10 月末とする。
- 8 原稿の提出は、紀要編集委員会とする。
- 9 原稿は編集委員会から委託した査読者の審査を経て編集委員会が採択する。
- 10 掲載した一論文につき、別刷り 30 部まで無償とし、それ以上は著者の負担とする。
- 11 紀要に掲載された論文等の著作権は、博物館に帰属するものとする。

Bulletin of the Tohoku University Museum